
Asger Juul Brunshøj

Visualization of

Beam with Coupled Bending and
Torsion Vibrations

Bachelor’s project

June 2014

Abstract

Beams with cross sections that are not doubly symmetric exhibits
coupled bending and torsion vibrations. The governing equations
of motion for the coupled vibrations are derived from equilibrium
equations. The equations are solved with a series expansion, using
the method of assumed modes to derive basis functions from
the uncoupled equations of motion. Solutions are implemented
in MATLAB by building a program featuring a graphical user
interface, allowing students to get a feel for coupled vibrations by
visualizing the vibrations for different settings and parameters.

I would like to thank my advisor, Jan Becker Høgsberg, for

giving me the idea for this project, as well as for his guidance.

Contents

Abstract 3

Notation 13

1 Introduction 15

2 Deriving the Coupled Equations of Motion 17

2.1 Equilibrium of moments 18

2.2 Force equilibrium 18

2.3 Equilibrium of torques 19

3 Solving the Coupled Equations of Motion 23

3.1 Deriving basis functions from the uncoupled equations 23

3.2 Manipulating the coupled equations of motion from PDEs to ODEs 28

3.3 Harmonic oscillations 34

3.4 Forced response 38

4 Implementation in MATLAB 41

4.1 Computing the vibration 41

4.2 The layout of the gui 46

4.3 Overview of code files 50

4.4 The MATLAB Layout Toolbox by The MathWorks Ltd 51

4.5 Passing data and handles between functions 52

4.6 Rendering and playing back the animations 52

4.7 Notes on the development process 54

4.8 Modification to the Layout Toolbox 55

4.9 Known bugs 55

4.10 Further development 55

A Appendix 57

A.1 Relation between moment of inertia and polar moment of area 57

A.2 Orthogonality conditions 57

B Code 61

B.1 launcher.m 61

B.2 opengui.m 62

B.3 defaults.m 75

B.4 collectinput.m 76

B.5 solver.m 78

B.6 plotting.m 85

B.7 playback.m 89

B.8 notify.m 90

Bibliography 91

List of Figures

1.1 Conceptual drawing of pure bending or torsion vibrations in con-
trast to coupled bending and torsion vibrations. 15

2.1 Beam with placement of the coordinate system, shear center, cen-
ter of mass and external load. 17

2.2 Relevant cross-sectional forces in infinitesimal beam segment. 18

2.3 Depiction of cross-sectional deflection with definition of w(x, t) and
φ(x, t). 19

4.1 A screenshot of the program GUI. 46

4.2 Representing a cross section by its gyration radii. 47

4.3 Example of the graphic in the Visualize Coupling output tab 48

4.4 Visualization of the eigenvectors of an uncoupled system. 48

4.5 Cross-section which the default input values are based on. 50

4.6 Schematic of code files used for launching the program. 51

4.7 Schematic of code files used by the Compute button. 51

4.8 Illustration of how the animation is rendered in layers. 53

List of Tables

3.1 Considered support types for bending. 27

3.2 Considered support types for torsion. 28

3.3 Bending support combinations with basis functions and roots of
frequency equation. 29

3.4 Torsion support combinations with basis functions and roots of fre-
quency equation. 29

Notation

0 A vector or matrix comprised of zeros, depending on context.
A Cross-sectional area.

Ak A constant of integration in the time response function of the k’th mode shape.
b A vector introduced when linearizing the system of ODEs.

Bk A constant of integration in the time response function of the k’th mode shape.
c Distance between the center of mass and the shear center.

C Location of the center of mass.
Ci Arbitrary constants of integration for i = 1, 2,
dx Infinitesimal length of beam segment.
Dn A constant factor in Wn(x).

E Elasticity modulus.
f A vector consisting of elements relating to the external force p(x, t).

Fn A constant factor in Φn(x).
G Shear modulus.
H A matrix introduced when linearizing the system of ODEs.

i Imaginary unit.
I The identity matrix of varying size depending on context.

ICM Moment of inertia of beam segment about an axis going through its center of mass.
Im Moment of inertia of beam segment about an axis going through its shear center.
Ip Polar moment of area defined by Ip = Iy + Iz =

∫
A y2 dA.

Iy Second moment of area of the cross section defined by Iy =
∫

A y2 dA, where y is
the distance to the center of mass along the y axis.

Iz Second moment of area of the cross section defined by Iz =
∫

A z2 dA, where z is
the distance to the center of mass along the z axis.

K Torsion constant.
K Stiffness matrix.
L Beam length.

M(x, t) Internal moment.
M Mass matrix.
O Location of the shear center. The shear center lies on the line (x, 0, 0).

p(x, t) External force.

q The vector
[
[z y]>

]
introduced when linearizing the system of ODEs.

Q(x, t) Internal shear force.
rn(t) A temporal part of the series expansion for deflection due to bending w(x, t).
Rk(t) A definite integral combining bending basis functions Wk(x) with the external force p(x, t).
sn(t) A temporal part of the series expansion for angular deflection due to torsion φ(x, t).
Sk(t) A definite integral combining torsion basis functions Φk(x) with the external force p(x, t).

vk The k’th eigenvector.

w(x, t) Deflection due to bending.
Wn(x) A basis function in the series expansion for bending.

y A time derivative of z introduced to linearize the system.
z A vector of time response functions.

δkn Kronecker-delta defined as δkn = 1 if n = k or δkn = 0 if n 6= k.
ωk The k’th natural frequency.

∂
∂x Partial derivate with respect to x. This will sometimes be written with an apostrophe as in w′(x, t).
∂
∂t Partial derivate with respect to t. This will sometimes be written with a dot as in ẇ(x, t).

φ(x, t) Angular deflection due to torsion.
Φn(x) A basis function in the series expansion for torsion.

ψk,n A definite integral combining bending and torsion basis functions Wk(x) and Φk(x).
Ψ A matrix made from elements ψk,n.
ρ Density.

τ(x, t) Internal torque.

1
Introduction

A beam with a doubly symmetric cross section, like an I-profile ,
will vibrate in pure bending when subjected to an external load or
bending moment. It may also vibrate in pure torsion, as is the case
when it is subjected only to an external torque. On the other hand,
beams with cross sections featuring only a single axis of symmetry
(or none at all) will be subject to coupled bending and torsion even
when subjected to only an external load, or only a torque, since
the coupling comes from the inertia of the beam as it vibrates. An
example of a beam with only a single axis of symmetry is a C-
clamp profile . The coupling is caused by the shear center and the
center of mass not coinciding. A homogenous doubly symmetric
cross section will always have coinciding shear center and center of
mass, but the same is not true for cross sections with only a single
or no axis of symmetry. Figure 1.1 attempts to illustrate the motion
of an cross section with two axes of symmetry contrasted by a
cross section with a single axis of symmetry.

(a)

(b)

(c)

Time

Figure 1.1: Conceptual drawing of
pure bending or torsion vibrations
and coupled bending and torsion
vibrations.

(a): A doubly symmetric cross
section of a beam with an I-profile in
pure bending. (This could be a typical
bernouille–euler beam).

(b): A doubly symmetric cross
section of a beam with an I-profile in
pure torsion.

(c): A C-clamp profile cross
section with a single axis of symmetry
exhibiting coupled bending and
torsion vibrations.

The ambition of this project is to build a tool in MATLAB to
visualize coupled bending and torsion vibrations. This program
is intended for use by students. The program is built around a
graphical user interface (GUI) that allows the user to easily change
parameters and play with various settings. As the equations are
complicated enough as is, we shall limit ourselves to investigating

16 visualization of beam with coupled bending and torsion vibrations

coupled bending and torsion vibrations for uniform beams with
homogenous cross sections with a single axis of symmetry. This has
the positive effect of making the software easier to use and allows
it to serve as a good introduction to coupled bending and torsion
vibrations.

The content of chapter 2 is the derivation of the governing equa-
tions of motion for the coupled vibrations. Chapter 3 focuses on
solving these equations, and the implementation in MATLAB is
discussed in chapter 4.

2
Deriving the Coupled Equations of Motion

Figure 2.1 shows a beam with a C-clamp profile. It will experience
coupled bending and torsion vibrations since it only has a single
axis of symmetry. The axis of is about the y axis. This chapter
derives coupled equations of motion from equilibrium equations for
a beam of this kind.

x

y

z

C

O

C

O

p(x, t)

L

Figure 2.1: A uniform beam of length
L subjected to a load p(x, t). Here,
O indicates the location of the shear
center and C indicates the location
of the center of mass. The coordinate
system is placed with origin at the
shear center, at the beam end.

The beam is uniform with length L. It may be subject to a load
p(x, t), which acts in the z direction. We’ll let O denote the shear
center, and C the center of mass. A coordinate system (x, y, z) is
placed with its origin at the shear center at one end.

A beam segment of infinitesimal length dx is shown on Figure
2.2. This includes relevant internal forces and moments, where Q
denotes shear forces, M is a moment about the y axis and τ denotes
a torque about the x axis. These are all functions of space x and of
time t, Q(x, t), M(x, t) and τ(x, t), but are written as Q, M and τ as
short notation. The same is true for p and p(x, t) in the following. p
acts on a line which goes through the center of mass C.

18 visualization of beam with coupled bending and torsion vibrations

x
y

z

C

Oτ

τ + ∂τ
∂x dx

p(x, t)

x

x + dx

dx

M + ∂M
∂x dx

M

Q + ∂Q
∂x dx

Q

Figure 2.2: A beam segment of in-
finitesimal length dx, with relevant
cross-sectionalal forces and moments.

2.1 Equilibrium of moments

Equilibrium of moments about the y axis, when taken at the right
side of the beam segment at x + dx, gives

M + M′dx−M + p
dx2

2
−Q dx = 0. (2.1)

The right hand side is zero, since the rotary inertia is assumed to be
negligible. The dx2 term is vanishingly small, and upon division by
dx and rearranging, this becomes

M′ = Q. (2.2)

Note in the following that an apostrophe, as in M′, will be used as
short notation for partial derivatives with respect to x. The short
notation will be used interchangably with the full notation ∂M

∂x ,
depending on whether the given context favors brevity or clarity of
structure. Likewise, a dot shall be used to denote partial derivates
with respect to time t, as in Ṁ, and will be used interchangeably
with ∂M

∂t . The full notation is usually preferred in favor of clarity
when introducing a partial derivative spanning multiple terms.

2.2 Force equilibrium

Force equilibrium in the direction of the z axis gives

Q + Q′dx−Q + p dx = −ρA dx
∂2

∂t2 (w− cφ) , (2.3)

where ρ is the density, A is the cross-sectional area, w is short
notation for the deflection due to bending w(x, t), and φ is short no-
tation for the angular deflection φ(x, t), see Figure 2.3. φ represents
an angle in radians. w is defined positive in the upwards direction,
and φ is defined positive counterclockwise. c is the distance be-
tween the shear center and the center of mass. The right hand side

deriving the coupled equations of motion 19

1 Steen Krenk and Jan Becker Høgs-
berg. Statics and Mechanics of Structures.
2013. ISBN 978-94-007-6112-4

of equation (2.3) is the cross-sectional mass, times its downward
acceleration. Here small angles of twist are assumed, in order to
obtain a linearized measure for the downward displacement of the
center of mass, which then becomes −(w− cφ).

C
O

z

y

O′
C′

p(x, t)

w(x, t)

y′

φ(x, t)

c

Figure 2.3: This defines the positive
direction of deflection due to bending
w, and angular deflection due to
torsion φ. O′ and C′ are the shear
center and center of mass respectively,
of the deflected cross-section. (The
distance between the shear center
and the center of mass has been
exaggerated in this figure. This is not
the true position of the shear center for
this cross section.)

Division by dx and substituting with equation (2.2) leads to

M′′ + p = −ρA (ẅ− cφ̈) . (2.4)

Using the relation

M = EIzw′′, (2.5)

which is derived in Krenk and Høgsberg (2013)1, where E is the
elastic modulus and Iz is the second moment of area which, for an
infinitesimal beam length dx, is computed by

Iz =
∫

A
z2 dA, (2.6)

with z denoting the distance to the elastic center along the z axis.
Combining equation (2.4) and (2.5) yields

∂2

∂x2

(
EIzw′′

)
+ p = −ρA (ẅ− cφ̈) . (2.7)

Since the beam is assumed uniform, the first term simplifies, and
with a bit of rearranging this leaves us with

EIzw′′′′ + ρAẅ = −p + cρAφ̈, (2.8)

which is the governing bending equation. It is coupled with tor-
sional deflections φ on account of c being non-zero.

2.3 Equilibrium of torques

Equilibrium of torques about an axis parallel to the x axis passing
through the moving deflected shear center O′, gives

τ + τ′ dx− τ + cρA dx ẅ + cp dx = φ̈Im. (2.9)

20 visualization of beam with coupled bending and torsion vibrations

Here, the right hand side is the angular acceleration φ̈ times the
moment of inertia of the beam segment, Im. This is the moment
of inertia of the beam segment about its shear center. The second
term on the left hand side stems from an inertial force of magnitude
ρA dx ẅ acting on the center of mass.

Employing the parallel axis theorem, the moment of inertia Im

may be written in terms of a moment of inertia about an axis going
through the center of mass, the centroidal moment of inertia ICM:

Im = ICM + c2ρA dx. (2.10)

Assuming a homogenous cross-section, ICM may be expressed in
terms of the second moment of area, with respect to an axis parallel
to the x axis passing through the center of mass. We will call this
second moment of area the polar moment of area, Ip, defined as

Ip =
∫

A
y2 + z2 dx, (2.11)

where y and z denote distances to the center of mass along the y
and z axes, respectively. The centroidal moment of inertia ICM can
be expressed as

ICM = ρ dx Ip. (2.12)

This equality is explained in the appendix, section A.1. Combining
equations (2.9), (2.10) and (2.12) yields

τ′ dx + cρA dx ẅ + cp dx = φ̈ρ dx Ip + φ̈c2ρA dx. (2.13)

Now dividing by dx and rearranging, this becomes

τ′ + cρA (ẅ− cφ̈) + cp = φ̈ρIp. (2.14)

In Krenk and Høgsberg (2013), the following relation between
torque and angle of twist is derived;

τ = GK
∂φ

∂x
, (2.15)

where G is the shear modulus of the material, and K is the torsion
constant (K will generally have to be computed numerically for
these cross sections). This is an approximation to the more exact

expression τ = GK ∂φ
∂x − R ∂4φ

∂x4 , where the term R ∂4φ

∂x4 comes from
considering warping of the cross section. Here, warping of the cross
section is ignored, and (2.15) is substituted into (2.14);

∂

∂x
(
GKφ′

)
+ cρA (ẅ− cφ̈) + cp = φ̈ρIp. (2.16)

Since we’re considering a homogenous, uniform beam, the product
GK is a constant. With this, and a bit of rearranging, we arrive at

GKφ′′ −
(

c2ρA + ρIp

)
φ̈ = −cp− cρAẅ, (2.17)

deriving the coupled equations of motion 21

which is the equation governing twist. Through a non-zero value of
c, the twist is coupled with deflections due to bending, and to the
vertical load p acting on the center of mass.

Together, the two coupled equations (2.8) and (2.17),

EIzw′′′′ + ρAẅ = −p + cρAφ̈; (2.18)

GKφ′′ −
(

c2ρA + ρIp

)
φ̈ = −cp− cρAẅ, (2.19)

comprises the set of governing dynamic equations of motion.

3
Solving the Coupled Equations of Motion

The coupled equations of motion derived in chapter 2 are solved us-
ing a series expansion. The aim is to be able to extract information
about the coupling of the vibration, and visualize individual mode
shapes of the vibration. A mode shape is the spatial shape of the
beam associated with a single one of its natural frequencies. It is a
certain linear combination of basis functions of the series expansion,
oscillating at a single natural frequency.

The solution to the equations are represented by a series of basis
functions, each multiplied by a time response function. This is done
for deflections due to bending, as well as for angular deflection
(twist) due to torsion. The basis functions could simply be chosen
as sine or cosine functions, as in a fourier expansion. However,
they are normally much better determined by paying attention to
the boundary conditions. Since deriving spatial mode shapes by
applying boundary conditions to the coupled equations of motion
proves difficult, we shall instead derive them from the uncoupled
equations of motion, by letting c = 0 in (2.18) and (2.19). These will
then be used as a best guess for the basis functions of the series
expansion.

After deciding on a set of basis functions, the differential equa-
tions are molded into a system of linear ordinary differential equa-
tions (ODEs), where the unknowns are the time response functions.
When visualizing a natural response, the system of ODEs are cast
as an an eigenvalue problem. The natural response is the beam re-
sponding to a set of initial conditions with no external force. When
an external load is acting, called the forced response, the system
is solved numerically by shaping it into a form suitable for use in
MATLABs built-in functions for solving ODEs.

3.1 Deriving basis functions from the uncoupled equations

Letting c = 0 and p = 0 in (2.18) and (2.19), considering a natural
response with no external force, leads to the uncoupled equations

EIzw′′′′ + ρAẅ = 0; (3.1)

GKφ′′ − ρIpφ̈ = 0. (3.2)

24 visualization of beam with coupled bending and torsion vibrations

1 Ole Christensen. Differentialligninger
og uendelige rækker. 2005. ISBN
87-88-76473-7

Basis functions for bending will be derived from (3.1) and basis
functions for torsion will be derived from (3.2) in the following.
Starting with bending, we attempt to write the solution to (3.1) in
the form

w(x, t) = W(x)r(t), (3.3)

where w(x, t) is split up into a spatial part W(x) and a temporal
part r(t). It will turn out that the complete solution w(x, t) cannot
be simply split up between a spatial part and a temporal part. The
effort here will instead lead to many separate valid functions for
W(x). These will be called Wn(x) as they depend on a parameter
we will call n. Wn(x) are the basis functions, and each of them
will be multiplied by its corresponding temporal part rn(t). The
complete solution w(x, t) will then be a linear combination of these.

By substituting this into (3.1), we get

EIzW ′′′′(x)r(t) = −ρAW(x)r̈(t). (3.4)

Separation of variables leads to two equations

W ′′′′(x)W(x)−1 = α4; (3.5)

− ρA
EIz

r̈(t)r(t)−1 = α4, (3.6)

for a real constant α4. Equation (3.5) is the one of interest here, as it
will yield the basis functions. Avoiding the trivial solution α4 = 0,
the solution is1

W(x) = C1 sin(αx) + C2 cos(αx) + C3 sinh(αx) + C4 cosh(αx).
(3.7)

The value of α and the constants of integration C are found by ap-
plying boundary conditions to this equation. This process is shown
in the following section for a simple set of boundary conditions.

3.1.1 Basis functions for deflections due to bending of a hinged-hinged
beam

By a hinge we mean a support with the following boundary condi-
tions:

w(0, t) = 0;

w(L, t) = 0;

w′′(0, t) = 0;

w′′(L, t) = 0. (3.8)

These boundary conditions for w(x, t) translates directly into condi-
tions for W(x). To see this, take w(0, t) = 0 as an example;

w(0, t) = W(0)r(t) = 0. (3.9)

Since the right hand side is zero, it must be true that either W(0) or
r(t) be zero as well. Since r(t) = 0 is the trivial solution, which we

solving the coupled equations of motion 25

are disregarding, W(0) must be zero. Returning to equation (3.7),
this means that

W(0) = C2 + C4 = 0; (3.10)

W ′′(0) = −C2α2 + C4α2 = 0. (3.11)

These equations imply C2 = C4 = 0. Turning to the remaining
boundary conditions,

W(L) = C1 sin(αL) + C3 sinh(αL) = 0; (3.12)

W ′′(L) = −C1α2 sin(αL) + C3α2 sinh(αL) = 0, (3.13)

We see that eliminating α2 from the second equation and adding
the equations yields 2C3 sinh(αl) = 0, leading to C3 = 0. (3.12) then
claims

C1 sin(αL) = 0. (3.14)

This is the so-called frequency equation. Insisting that the last
constant be non-zero, C1 6= 0, this means sin(αL) = 0, so the roots
of the frequency equation are

αL = nπ, (3.15)

or

α =
nπ

L
, (3.16)

where n is an integer, but of course n 6= 0. α is the frequency of
the basis function, as is evident from (3.7). The boundary condi-
tions cannot assign a value to the remaining constant C1, which
represents the amplitude of the basis function. We shall leave this
amplitude untouched for now and define it later. To summarize, we
have

Wn(x) = Dn sin
(nπx

L

)
, (3.17)

where Dn is the amplitude which has yet to be defined. This de-
fines a basis function for each n.

At this point, it is tempting to continue to solve (3.6) for r(t).
This we unfortunately cannot do, as we would have simply solved
the uncoupled equations of motion. However, when substituted
into equation (3.3), the result obtained above means that a specific
solution to (3.3) wn(x, t) for a given n takes the form

wn(x, t) = Dn sin
(nπx

L

)
rn(t). (3.18)

This represents an infinitude of solutions as n is unrestricted, so we
shall have to express w(x, t) as a linear combination of these;

w(x, t) = ∑
n

Dn sin
(nπx

L

)
rn(t). (3.19)

As this is a linear combination, we should expect to find constants
scaling one term in relation to the others. This is not the task of Dn.

26 visualization of beam with coupled bending and torsion vibrations

We shall later wish to define Dn in a way which slightly simplifies
the equations. Instead, the relative weight of the basis functions in
the linear combination is taken care of by rn(t), which is as of yet
undefined and shall scale accordingly when computed.

Note also from equation (3.17), that negative values of n really
represent the same shapes as their positive counterpart. In other
words, they are linearly dependent. As they are all summed in the
linear combination of (3.19), it is unnecessary to consider negative
values of n. When dropping the negative n, the adjustment of
the amplitude of the remaining terms is accounted for by rn(t).
Changing the index on the sum to only include postive integer
values of n, we arrive at the final form for a hinged-hinged beam;

w(x, t) =
∞

∑
n=1

Dn sin
(nπx

L

)
rn(t). (3.20)

However, since (3.17) is valid only for a hinged-hinged beam, in the
interest of being able to represent other boundary conditions we
shall represent the deflection as

w(x, t) =
∞

∑
n=1

Wn(x)rn(t). (3.21)

If solving the uncoupled equations of motion was the goal, then
Wn(x) would be the mode shapes, as rn(t) would represent a har-
monic oscillation at the n’th natural frequency. This is not the case
for the coupled equations of motion. As we shall later see, rn(t) will
be a mixture of harmonic oscillations at the various natural frequen-
cies. rn(t) represents a mixture of natural frequencies instead of a
single natural frequency, because the basis functions are derived
from the uncoupled system.

In section 3.2, this series expansion will be substitued into the
coupled equations of motion together with its counterpart for
torsion, developed in the following section.

3.1.2 Basis functions for a fixed-fixed beam with regards to torsion

Running through the same procedure as for bending above, the
simplest boundary conditions with respect to torsion is a fixed-
fixed beam, allowing no twist in either end;

φ(0, t) = 0;

φ(L, t) = 0. (3.22)

Attempting to split up φ(x, t) into a spatial part Φ(x) and a tempo-
ral part s(t);

φ(x, t) = Φ(x)s(t), (3.23)

and inserting it into (3.2) yields

GKΦ′′(x)s(t)− ρIpΦ(x)s̈(t) = 0. (3.24)

solving the coupled equations of motion 27

Separation of variables leads to

Φ′′(x)Φ(x)−1 = −β2; (3.25)
ρIp

GK
s̈(t)s(t)−1 = −β2, (3.26)

for a real constant β2. The harmonic solution of interest entails that
β2 > 0, whereby (3.25) has the solution

Φ(x) = C1 cos(βx) + C2 sin(βx). (3.27)

Applying the first boundary condition, φ(0, t) = 0, we see that
C1 = 0. The second boundary condition φ(L, t) = 0 implies
C2 sin(βL) = 0, so to avoid the trivial solution, we must have

sin(βL) = 0. (3.28)

This is the frequency equation. The roots are

βL = nπ, (3.29)

or

β =
nπ

L
. (3.30)

The n’th basis function then take the form

Φn(x) = Fn sin
(nπx

L

)
, (3.31)

where Fn is the amplitude. Wrapping this up in a linear combina-
tion as before, we arrive at

φ(x, t) =
∞

∑
n=1

Fn sin
(nπx

L

)
sn(t). (3.32)

Expressing the basis functions as Φn(x) in order to account for
other boundary conditions, (3.32) has the general form

φ(x, t) =
∞

∑
n=1

Φn(x)sn(t). (3.33)

Section 3.1.3 introduces some additional supports and boundary
conditions.

3.1.3 Other boundary conditions

Bending support type Boundary conditions

Hinged w = w′′ = 0

Clamped w = w′ = 0

Guided w′ = w′′′ = 0

Free w′′ = w′′′ = 0

Table 3.1: Considered support types
for bending and their corresponding
boundary conditions.

28 visualization of beam with coupled bending and torsion vibrations

Torsion support type Boundary conditions

Fixed φ = 0

Free φ′ = 0

Table 3.2: Considered support types
for torsion and their corresponding
boundary conditions.

2 Jon Juel Thomsen. Vibrations and
Stability. 2003. ISBN 978-3-642-07272-7

In addition to the simple boundary conditions of the previous
two sections, We shall consider a number of additional support
types. Table 3.1 contains a number of supports providing boundary
conditions to bending. Table 3.2 contains the considered boundary
conditions for torsion. Rather than go through the repetitious pro-
cedure of finding basis functions for the more advanced boundary
conditions, they can be readily found in textbooks. Picking a few
combinations of bending support types and borrowing the results2

for the basis functions, the basis functions and roots are summed
up in Tables 3.3 and 3.4.

3.2 Manipulating the coupled equations of motion from PDEs
to ODEs

With the basis functions established, we now go hunting for the
time response functions rn(t) and sn(t). The series expansions for
w(x, t) and φ(x, t), equations (3.21) and (3.33), are inserted into the
coupled equations of motion, equation (2.18) and (2.19);

EIz

∞

∑
n=1

W ′′′′n (x)rn(t) + ρA
∞

∑
n=1

Wn(x)r̈n(t)

= −p + cρA
∞

∑
n=1

Φn(x)s̈n(t); (3.34)

GK
∞

∑
n=1

Φ′′n(x)sn(t)−
(

c2ρA + ρIp

) ∞

∑
n=1

Φn(x)s̈n(t)

= −cp− cρA
∞

∑
n=1

Wn(x)r̈n(t). (3.35)

Starting with (3.34), the equation is multiplied by one of the basis
functions Wk(x), and integrated over the length of the beam:

EIz

∞

∑
n=1

∫ L

0
Wk(x)W ′′′′n (x) dx rn(t)+ ρA

∞

∑
n=1

∫ L

0
Wk(x)Wn(x) dx r̈n(t)

= −
∫ L

0
Wk(x)p(x, t) dx + cρA

∞

∑
n=1

∫ L

0
Wk(x)Φn(x) dx s̈n(t),

(3.36)

where the integration is performed over the individual terms in
the summations. The integral featuring both Wk(x) and Φn(x) will,
along with a few constants, be denoted by ψk,n;

ψk,n = cρA
∫ L

0
Wk(x)Φn(x) dx, (3.37)

solving the coupled equations of motion 29

Supports Roots αnL of
frequency
equation

Basis function without
amplitude; Wn(x)/Dn

Hinged-hinged
(simply supported)

nπ sin(αnx)

Clamped-clamped
(cantilever)

4.7300
7.8532

10.9956
14.1372

→ (2n + 1)π/2

J (αnx)− J (αnL)
H (αnL)

H (αnx)

Clamped-hinged 3.9266
7.0686

10.2102
13.3518

→ (4n + 1)π/4

J (αnx)− J (αnL)
H (αnL)

H (αnx)

Clamped-free 1.8751
4.6941
7.8548

10.9955
→ (2n− 1)π/2

J (αnx)− G (αnL)
F (αnL)

H (αnx)

Free-free 4.7300
7.8532

10.9956
14.1372

→ (2n + 1)π/2

G (αnx)− J (αnL)
H (αnL)

F (αnx)

Clamped-guided 2.3650
5.4978
8.6394

11.7810
→ (4n− 1)π/4

J (αnx)− F (αnL)
J (αnL)

H (αnx)

J(u) = cosh(u)− cos(u);
H(u) = sinh(u)− sin(u);
G(u) = cosh(u) + cos(u);
F(u) = sinh(u) + sin(u).

Table 3.3: Bending basis functions for
combinations of support types. The
results are borrowed from Thomsen
(2003).

Supports Roots βnL of
frequency
equation

Basis function without
amplitude; Φn(x)/Fn

Fixed-fixed nπ sin (βnx)

Fixed-free
(2n− 1)π

2
sin(βnx)

Free-free nπ cos (βnx)

Table 3.4: Torsion basis functions for
combinations of support types. The
results are borrowed from Thomsen
(2003).

30 visualization of beam with coupled bending and torsion vibrations

so the first index on ψ is always the index on W(x) and the second
index is the index on Φ(x). Likewise, the integral featuring Wk(x)
and p(x, t) will be denoted by Rk(t):

Rk(t) =
∫ L

0
Wk(x)p(x, t) dx. (3.38)

Integration by parts is used on the first term on the left hand side,
leading to

− EIz

∞

∑
n=1

∫ L

0
W ′k(x)W ′′′n (x) dx +

[
Wk(x)W ′′′n (x)

]L
0 rn(t)

+ ρA
∞

∑
n=1

∫ L

0
Wk(x)Wn(x) dx r̈n(t)

= −Rk(t) +
∞

∑
n=1

ψk,n s̈n(t). (3.39)

The term [Wk(x)W ′′′n (x)]L0 is equal to zero because of the boundary
conditions. That this term is equal to zero is obvious when looking
at the boundary conditions in Table 3.1. Performing integration by
parts once more leads to

EIz

∞

∑
n=1

∫ L

0
W ′′k (x)W ′′n (x) dx rn(t)+ ρA

∞

∑
n=1

∫ L

0
Wk(x)Wn(x) dx r̈n(t)

= −Rk(t) +
∞

∑
n=1

ψk,n s̈n(t). (3.40)

Again the term
[
W ′k(x)W ′′n (x)

]L
0 is zero. The integrals can be sim-

plified radically by utilizing orthogonality conditions for the differ-
ential equation (3.5) from which the basis functions were derived.
These conditions tells us that the integrals only hold non-zero
values when k = n, that is,∫ L

0
WkWn dx = 0, for k 6= n, (3.41)

and∫ L

0
W ′′k W ′′n dx = 0, for k 6= n. (3.42)

These conditions of orthogonality are reviewed in more detail in the
appendix, section A.2. When k = n, we shall like the first integral to
be equal to one, in order to simplify the equations;∫ L

0
WkWn dx = 1, for k = n. (3.43)

This implies that∫ L

0
W ′′k W ′′n dx = α4

n, for k = n, (3.44)

see (A.6). We have the freedom to dictate that the first integral be
equal to one, because we can assign values to the amplitudes Dn of

solving the coupled equations of motion 31

the basis functions in equation (3.17), such that the integral is equal
to one. That is, we define

Dn =
1√∫ L

0 Wn(x)2 dx
, (3.45)

where Wn(x) in this equation represents the basis function without
its amplitude, as this would otherwise be a recursive equation. In
other words, here Wn(x) is the formula shown in Table 3.3. With
the introduction of the kronecker delta,

δkn =

0 for k 6= n;

1 for k = n,
(3.46)

this can summed up as∫ L

0
Wk(x)Wn(x) dx = δkn, (3.47)

and∫ L

0
W ′′k (x)W ′′n (x) dx = δknα4

n. (3.48)

Using (3.47) and (3.48) in (3.40) results in

EIz

∞

∑
n=1

δknα4
nrn(t) + ρA

∞

∑
n=1

δkn r̈n(t)

= −Rk(t) +
∞

∑
n=1

ψk,n s̈n(t). (3.49)

The kronecker delta eliminates all but one term in the summations;

EIzα4
krk(t) + ρAr̈k(t) = −Rk(t) +

∞

∑
n=1

ψk,n s̈n(t). (3.50)

This equation couples any specific bending basis function Wk(x)
and its associated time response function rk(t) to the torsion basis
functions through the second term on the right hand side. The
equation is valid for all positive integer values of k; each corre-
sponding to the k’th basis function.

As we cannot include an infinite number of terms in the series
expansion of w(x, t), we shall have to include only some finite
number of terms, N. Smaller values of k correspond to lower spatial
frequencies in the basis functions, so values of k going from 1 to
N will represent the N basis functions with the lowest spatial
frequencies. Note also that importantly, this equation now only
depends on time t, as the integrals eliminate any dependence on x.
This is now an ordinary differential equation, not a partial one. At
the end of this section we shall construct a system of ODEs written
as a matrix equation, but first the equations of torsion must be
brought up to speed.

The coupled equation of motion for torsion (3.35) is tackled in
much the same manner as equation (3.34) was in the above. The

32 visualization of beam with coupled bending and torsion vibrations

following is dealt with rather cursory as it is mostly repeating the
same procedure.

Equation (3.35) is multiplied by a basis function Φk(x), inte-
grated over the length of the beam and rewritten by performing
integration by parts to produce

− GK
∞

∑
n=1

∫ L

0
Φ′k(x)Φ′n(x) dx sn(t)

−
(

c2ρA + ρIp

) ∞

∑
n=1

∫ L

0
Φk(x)Φn(x) dx s̈n(t)

= −c
∫ L

0
Φk(x)p(x, t) dx − cρA

∞

∑
n=1

∫ L

0
Φk(x)Wn(x) dx r̈n(t).

(3.51)

The integral featuring Φk(x) and Wn(x) along with its scalar factors
can be expressed as ψn,k and the integral featuring Φk(x) and p(x, t)
along with its scalar factor c will be denoted by Sk(t);

Sk(t) = c
∫ L

0
Φk(x)p(x, t) dx. (3.52)

The following orthogonality conditions are valid for the torsion
basis functions, and are reviewed in section A.2;∫ L

0
ΦkΦn dx = 0, for k 6= n, (3.53)

and∫ L

0
Φ′kΦ′n dx = 0, for k 6= n. (3.54)

The amplitudes Fn of the torsion basis functions of equation (3.31),
are defined such that∫ L

0
Φk(x)Φn(x) dx = δkn. (3.55)

Which means that the constants are computed by

Fn =
1√∫ L

0 Φn(x)2 dx
, (3.56)

where Φn(x) in this equation represents the basis function without
its amplitude, as this would otherwise be a recursive equation.
In other words, here Φn(x) is the formula shown in Table 3.4.
Additionally,∫ L

0
Φ′k(x)Φ′n(x) dx = δknβ2

n, (3.57)

which can be seen from equation (A.16). Substituting the above into
equation (3.51) leads to

− GK
∞

∑
n=1

δknβ2
nsn(t)−

(
c2ρA + ρIp

) ∞

∑
n=1

δkn s̈n(t)

= −Sk(t)−
∞

∑
n=1

ψn,k r̈n(t). (3.58)

solving the coupled equations of motion 33

Note that the indices on ψn,k have been switched compared to equa-
tion (3.50). Letting the kronecker delta eliminate the summations
followed by reversing the signs yields

GKβ2
ksk(t) +

(
c2ρA + ρIp

)
s̈k(t) = Sk(t) +

∞

∑
n=1

ψn,k r̈n(t), (3.59)

This equation, in combination with (3.50), provides one equation
for every unknown time response function, allowing us to combine
the coupled bending and torsion equations into a system of linear
ODEs.

Taking only the first N terms in the series expansion, the linear
ordinary differential equations represented by (3.50) and (3.59) are
written as a matrix equation. All the factors of the terms r̈k(t) or
s̈k(t) are collected into a mass matrix M. All factors of rk(t) or sk(t)
are collected into a stiffness matrix K, and the terms Rk(t) and Sk(t)
that comes from the external load are collected into a vector f on
the right hand side. The matrix equation looks as follows:

Mz̈ + Kz = f, (3.60)

where z is the vector of time response functions;

z =
[
r1 . . . rN s1 . . . sN

]>
, (3.61)

where > indicates a transpose. The mass matrix is

M =

[
diag (ρA) Ψ

Ψ> diag
(
c2ρA + ρIp

)] , (3.62)

where diag(. . .) is a diagonal matrix. Here the diagonnal matrices
are N by N matrices. Ψ is the matrix

Ψ =

−ψ1,1 −ψ1,2 . . . −ψ1,N

−ψ2,1 −ψ2,2 . . . −ψ2,N
...

...
. . .

...
−ψN,1 −ψN,2 . . . −ψN,N

 . (3.63)

The stiffness matrix K is

K = diag
(

EIzα4
1, . . . , EIzα4

N , GKβ2
1, . . . , GKβ2

N

)
. (3.64)

The right hand side f is

f =
[
−R1(t) . . . −RN(t) S1(t) . . . SN(t)

]>
. (3.65)

In this section, the PDEs have been converted into a system of
ordinary differential equations. This system is solved in the fol-
lowing sections in different ways for different purposes. When we
want to visualize an individual mode shape or a natural response,
the matrix equation is cast as an eigenvalue problem. The natural
response is the problem of finding a response to a set of initial con-
ditions when no external force is acting. When there is an external
force acting, the response of the beam is called the forced response.
The vibration is computed numerically, by converting the matrix
equation (3.60) into a system of first order ODEs that can be solved
numerically in MATLAB.

34 visualization of beam with coupled bending and torsion vibrations

3 Daniel. Inman. Engineering Vibration.
Pearson Prentice Hall, 2008. ISBN
0132281732, 9780132281737

3.3 Harmonic oscillations

In this section, the matrix equation is cast as an eigenvalue problem.
First, the external load is set to zero p = 0, after which the matrix
equation (3.60) takes the form

Mz̈ + Kz = 0. (3.66)

This is cast as a generalized eigenvalue problem by first substitut-
ing with z = eiωtv, where i is the imaginary unit. Substituting and
rearranging leads to the eigenvalue problem

Kv = ω2Mv. (3.67)

ω is a natural frequency and ω2 is an eigenvealue. As M and K are
of size 2N by 2N, this produces 2N sets of natural frequencies and
eigenvectors. The eigenvectors v and eigenvalues ω2 are computed
in MATLAB. Since each eigenvalue corresponds to two solutions,
z = eiωtv and z = e−iωtv, the solutions can be written as

zk = (Ak sin(ωkt) + Bk cos(ωkt)) vk, (3.68)

where k means that this is the k’th eigenvector vk and natural fre-
quency ωk. A more detailed justification for writing the solution
in the form (3.68) is provided in Inman3. Here, Ak and Bk are con-
stants to be determined by the initial conditions. Since k represents
any value from 1 to 2N, Ak and Bk add up to 4N constants.

Note that zk of equation (3.68) has a significant importance. zk

is the temporal function of the k’th mode shape, as zk is a vector of
time response functions rk(t) and sk(t) which oscillate at the k’th
natural frequency ωk. To summarize, zk describes the vibration of
the k’th mode shape over time. The eigenvector vk determines the
relative weight of the time response functions rk(t) and sk(t) at the
natural frequency ωk. Recall from equations (3.21) and (3.33) that
this means the eigenvector vk indirectly controls the relative weight
of the basis functions Wn(x) and Φn(x) for the k’th mode shape.

It is not yet immediately obvious how the k’th mode shape looks
like, (isolating a single mode shape is the purpose of section 3.3.1).

Equation (3.68) represents 2N different solutions to (3.66), since
k represents any value from 1 to 2N. By linear combination the
complete solution for the time responses z is

z =
2N

∑
k=1

(Ak sin(ωkt) + Bk cos(ωkt)) vk. (3.69)

This is a vector equation, but breaking up the eigenvector we see
from (3.61) that solutions for specific time response functions rn(t)
or sn(t) are

rn(t) =
2N

∑
k=1

(Ak sin(ωkt) + Bk cos(ωkt)) vn,k; (3.70)

sn(t) =
2N

∑
k=1

(Ak sin(ωkt) + Bk cos(ωkt)) vN+n,k. (3.71)

solving the coupled equations of motion 35

where vn,k is the n’th element of the eigenvector vk corresponding
to the k’th natural frequency ωk. When two indices are used as
in vn,k, the second will denote the eigenvector, while the first will
denote the element in that eigenvector.

The full solution for bending is then

w(x, t) =
N

∑
n=1

Wn(x)rn(t)

=
N

∑
n=1

Wn(x)
2N

∑
k=1

(Ak sin(ωkt) + Bk cos(ωkt)) vn,k. (3.72)

Similarly, for torsion it is

φ(x, t) =
N

∑
n=1

Φn(x)sn(t)

=
N

∑
n=1

Φn(x)
2N

∑
k=1

(Ak sin(ωkt) + Bk cos(ωkt)) vN+n,k. (3.73)

In other words, if we can determine the constants Ak and Bk, the
two equations above fully describes the vibration.

The following two sections concern determination of the con-
stants Ak and Bk. Section (3.3.1) will determine the constants from
the perspective of wanting to only excite a specific mode shape.
Section (3.3.2) determines the constants from the perspective of
starting the vibration from a set of initial conditions.

3.3.1 Mode shapes

A mode shape is the spatial shape of the beam as it performs
harmonic oscillations at a single natural frequency. The real motion
of the beam is a linear combination of the mode shapes. A single
mode shape will combine spatial basis functions from both the
series expansion for bending and the series expansion for torsion,
since the beam features coupled bending and torsion vibrations. In
other words, a mode shape is a linear combination of all Wn(x) and
Φn(x), oscillating at a single natural frequency.

In the interest of visualizing independent mode shapes, eliminate
all but one mode shape from (3.69) by letting all the constants be
equal to zero except the two constants Ak and Bk corresponding
to the k’th mode shape. Equations (3.72) and (3.73) subsequently
become

w(x, t) =
N

∑
n=1

Wn(x) (Ak sin(ωkt) + Bk cos(ωkt)) vn,k; (3.74)

φ(x, t) =
N

∑
n=1

Φn(x) (Ak sin(ωkt) + Bk cos(ωkt)) vN+n,k, (3.75)

The constants of integration Ak and Bk determine amplitude and
phase of the oscillation, and we shall choose Ak = 0 in the interest
of starting the oscillation at its greatest amplitude for time t = 0.

36 visualization of beam with coupled bending and torsion vibrations

With Ak eliminated, the solution takes the form

wk(x, t) = Bk cos(ωkt)
N

∑
n=1

Wn(x)vn,k; (3.76)

φk(x, t) = Bk cos(ωkt)
N

∑
n=1

Φn(x)vN+n,k. (3.77)

Bk will be chosen so that the maximum rotation of the beam is
small enough that it does not violate the assumption of small
deflections which keeps the problem linear.

3.3.2 Natural response

The natural response is the time response of a beam subjected to
initial conditions with no external load. The natural response will
combine several mode shapes. It is calculated by determining suit-
able values for the constants of integration Ak and Bk. Returning
to equation (3.72) and (3.73), the constants can be determined by
applying initial conditions, w(x, 0), ẇ(x, 0), φ(x, 0) and φ̇(x, 0). In
the case of bending, recall from (3.21) that the first initial condition
w(x, 0) can be written as

w(x, 0) =
N

∑
n=1

Wn(x)rn(0). (3.78)

Multiply this equation by a basis function Wj(x), and integrate from
0 to L.∫ L

0
Wj(x)w(x, 0) dx =

∫ L

0
Wj(x)

N

∑
n=1

Wn(x)rn(0) dx

=
N

∑
n=1

∫ L

0
Wj(x)Wn(x) dx rn(0) (3.79)

Recall that the amplitudes of the basis functions Wj(x) have been
chosen so that the integral on the right hand side is equal to unity.
The previously mentioned orthogonality conditions (equation
(3.41)) also applies, and used together these conditions reduces the
right hand side:∫ L

0
Wj(x)w(x, 0) dx = rj(0). (3.80)

Now substitute the expression for rj(0) found in equation (3.70)
into the above:∫ L

0
Wj(x)w(x, 0) dx =

2N

∑
k=1

(Ak sin(ωk0) + Bk cos(ωk0)) vj,k

=
2N

∑
k=1

Bkvj,k. (3.81)

This represents N equations, since j can take any value from one to
N. (Even though there are values of vj,k for larger j, Wj(x) on the
left hand side of (3.81) only allows j to range from 1 to N, and the

solving the coupled equations of motion 37

substitution by equation (3.70) would not make sense for larger j
either. The rest of the elements vj,l of the eigenvectors are used with
the next initial condition).

Using equation (3.71) and the initial condition φ(x, 0) in the exact
same way, we obtain∫ L

0
Φj(x)φ(x, 0) dx =

2N

∑
k=1

BkvN+j,k. (3.82)

This is an additional N equations, amounting to a system of 2N
linear equations with the 2N unknown constants B1, . . . , B2N . The
constants Bk can be determined from the above alone, but let us
first find expressions for Ak before doing so.

Repeating the procedure starting with ẇ(x, 0), yields∫ L

0
Wj(x)ẇ(x, 0) dx =

∫ L

0
Wj(x)

N

∑
n=1

Wn(x)ṙn(0) dx

= ṙj(0). (3.83)

Differentiating (3.70) with respect to time and substituting gives∫ L

0
Wj(x)ẇ(x, 0) dx =

2N

∑
k=1

(Akωk cos(ωk0)− Bkωk sin(ωk0)) vj,k

=
2N

∑
k=1

Akωkvj,k. (3.84)

This is followed up by similar equations for the initial condition
φ̇(x, 0):∫ L

0
Φj(x)φ̇(x, 0) dx =

2N

∑
k=1

AkωkvN+j,k. (3.85)

In summation, equations (3.81)–(3.85) determine the constants of
integration, Ak and Bk, through two linear systems of 2N equations
each. The system that determines the constants Bk is

v1,1 . . . v1,2N

...
. . .

...
v2N,1 . . . v2N,2N

B1
...

B2N

 =

∫ L
0 W1(x)w(x, 0) dx

...∫ L
0 WN(x)w(x, 0) dx∫ L
0 Φ1(x)φ(x, 0) dx

...∫ L
0 ΦN(x)φ(x, 0) dx

. (3.86)

The system that determines the constants Ak is

ω1v1,1 . . . ω2Nv1,2N

...
. . .

...
ω1v2N,1 . . . ω2Nv2N,2N

A1
...

A2N

 =

∫ L
0 W1(x)ẇ(x, 0) dx

...∫ L
0 WN(x)ẇ(x, 0) dx∫ L
0 Φ1(x)φ̇(x, 0) dx

...∫ L
0 ΦN(x)φ̇(x, 0) dx

.

(3.87)

38 visualization of beam with coupled bending and torsion vibrations

Finding the solution to this system can easily be achieved by com-
puting the inverse of the matrix, or by using built in tools like the
backslash \ operator in MATLAB. Once the solution to this sys-
tem has been computed, w(x, t) and φ(x, t) are computed from
equations (3.72) and (3.73).

3.4 Forced response

The forced response is the time response of a beam subjected to
an external load and started from rest. When an external load
is applied p(x, t), the matrix equation (3.60) is inhomogenous.
Since the beam is initially at rest for t = 0, the vibration comes
solely from the external force. The solution is simply the particular
solution to the inhomogenous system. Unfortunately, the particular
solution is difficult to find in the general case, since the user of the
software may specify any function of x and t. For this reason, the
solution is obtained by numerical means.

The following manipulates the system into a form that is readily
solved by MATLAB’s functions for numerically solving systems of
ordinary differential equations. MATLAB requires that the system
is in the form of first order ODEs.

Returning to equation (3.60), let

y = ż. (3.88)

Substituting with this gives

Mẏ + Kz = f. (3.89)

Together, equations (3.88) and a rearrangement of (3.89) provide a
system of first order linear ODEs:

ż = y; (3.90)

ẏ = −M−1Kz + M−1f. (3.91)

Which when written in matrix form is[
ż
ẏ

]
=

[
0 I

−M−1K 0

] [
z
y

]
+

[
0

M−1f

]
, (3.92)

where I is the identity matrix and 0 is either a vector or a matrix

of zeros, depending on the context. The vector
[
[z y]>

]
has 4N

elements, and the coefficient matrix is 4N by 4N as well. The goal
here is still to find z.

This can be further condensed by letting

q =

[
z
y

]
, (3.93)

H =

[
0 I

−M−1K 0

]
, (3.94)

solving the coupled equations of motion 39

and

b =

[
0

M−1f

]
. (3.95)

Resulting in the short form

q̇ = Hq + b. (3.96)

This form is well suited for implementation in MATLAB. Once z
has been found numerically and the solutions for rk(t) and sk(t)
have been extracted from z, the solutions for w(x, t) and φ(x, t) are
again given by (3.21) and (3.33) as

w(x, t) =
N

∑
n=1

Wn(x)rn(t); (3.97)

φ(x, t) =
N

∑
n=1

Φn(x)sn(t). (3.98)

Section 3.3 and the present section described solutions to three
problems. The problem of visualizing a specific mode shape, com-
puting the natural response and computing the forced response.
The implementation of the solutions is the topic of chapter 4.

1 The program code. URL https:

//dl.dropboxusercontent.com/u/

7180193/BA/BAprogram.zip

4
Implementation in MATLAB

The present chapter will implement the solutions found in the
previous chapter as well as outline some of the more interesting
design considerations and a few of the struggles that went into
writing the code. The implementation of the solutions are discussed
first, followed by the design of the GUI discussed in section 4.4
(a sneak peak of the GUI can be had from Figure 4.1). Section 4.1
contains a detailed discussion of the computation of the solution by
use of the results from chapter 3. The animations deserve a section
as well. The way in which the animations are produced is described
in section 4.6.

Not every part of the code can be described in this chapter, and
some of it is fairly trivial anyway. The complete matlab code is
provided in the appendix, chapter B. The program was written and
tested in MATLAB version R2013b.

The code is available as a zip file.1

4.1 Computing the vibration

In the program code, the following computation of the vibration all
takes place in the file solver.m.

A one dimensional array xpoints is defined. It contains a bunch
of x-coordinates from 0 to L. It is defined with a default resolution
of approximately 500 points. It should provide about one point per
pixel along the x axis in the final animation. Likewise, tpoints is
defined as a one dimensional array holding time values for each
frame.

The computation of the basis functions Wn(x) and Φn(x) are
ordered into functions with a function for each combination of
support types. As an example, pseudo code for a function which
computes bending basis functions for a clamped-clamped beam
looks like

function [modeshape, spatialfreq] = clamped_clamped_BENDING()

% 1. Define variable "roots" that holds roots to the frequency

equation.

precomputed = [4.7300 7.8532 10.9956 14.1372];

if N<5

roots = precomputed(1:N);

https://dl.dropboxusercontent.com/u/7180193/BA/BAprogram.zip
https://dl.dropboxusercontent.com/u/7180193/BA/BAprogram.zip
https://dl.dropboxusercontent.com/u/7180193/BA/BAprogram.zip

42 visualization of beam with coupled bending and torsion vibrations

else

roots = [precomputed (2*(5:N)+1)*pi/2];

end

% 2. Use MATLAB function ndgrid() to convert variables "roots" and

"xpoints" into arrays.

[rG, xG] = ndgrid(roots,xpoints);

% 3. Compute basis functions without amplitude factors.

basisfunctionRaw = cosh(rG.*xG/L)-cos(rG.*xG/L)-(cosh(rG)-

cos(rG))./(sinh(rG)-sin(rG)).*(sinh(rG.*xG/L)-sin(rG

.*xG/L));

% 4. Compute amplitude factors D_n.

NormalizationFactor = 1./sqrt(trapz(xpoints,(

basisfunctionRaw.^2)’));

% 5. Multiply the amplitude factors onto the basis functions.

basisfunction = diag(NormalizationFactor)*basisfunctionRaw

;

% 6. Return basis functions as a two dimensional array and return

spatial frequencies as a one dimensional array.

spatialfreq = roots/L;

end

The roots defined in step 1. and the basis functions without ampli-
tudes Dn defined in step 3. come from Table 3.3. Since there are
different basis functions Wn(x) as indicated by the index n, and
since they depend on x, we will represent the basis functions re-
turned by this function as an array. The array will be structured
so that the first row is W1(x), the second row is W2(x) and so on.
The columns will correspond to the x-coordinates of the variable
xpoints. In order structure the array in this way, the vectors roots

and xpoints are first converted into arrays that can then be mul-
tiplied or divided like scalars. This is achieved using MATLAB’s
ndgrid command in step 2.

Step 4. computes the amplitude factors as described in equation
(3.45). The basis functions are corrected with these amplitudes in
step 5. The roots are also returned along with the basis functions in
step 6., as they define αn.

ndgrid is used repeatedly in the rest of the code to represent
functions of two variables as a numerical array, or to represent
several functions of a single variable with an index in the same
array. The decision to represent functions as numerical arrays
instead of as continous functions is discussed in section 4.7.

Now, continuing on, the matrix Ψ, which occurs in the mass
matrix M of equation (3.60), is computed. Recall from equation
(3.37) that the elements of Ψ are integrals which couple the bending
basis functions with the torsion basis functions. The elements of
Ψ are computed by numerical integration using the MATLAB
command trapz.

for i=1:N

for j=1:N

Psi(i,j) = c*rho*area*trapz(xpoints,W(i,:).*Phi(j,:));

end

end

implementation in matlab 43

Then the mass matrix M and stiffness matrix K are assembled from
equations (3.62) and (3.64).

The next step is to solve the eigenvalue problem. The eigen-
value problem is solved by use of MATLAB’s eig. This returns the
natural frequencies and eigenvectors:

function [natfreq,eigenvectors] = EigenProblemSolver(M,K)

% 1. Solve eigenvalue problem with eig():

[eigenvectors,eigenvalues] = eig(K,M);

% 2. A vector "natfreq" is created which are the square roots of

the eigenvalues.

% 3. The function returns the natural frequencies and the

eigenvectors.

end

At this point in the solver.m main function, one of three func-
tions are called depending on whether the aim is to visualize a
single mode shape, the natural response or the forced response. The
following three sections describe these cases.

4.1.1 Computing a single mode shape

When visualizing a single mode shape, a call is made to a function
in solver.m called singlemodeshape.

In implementing equations (3.76) and (3.77), the sum is com-
puted first. The sum depends only on x for a given mode shape
k, so it can be represented as a one-dimensional array with each
value representing the value of the sum for a certain value of x.
First, taking (3.76) as an example, without actually performing
the summation yet, the content of the sum is computed into an
array sumcontent where rows represent values of n and columns
represent x-coordinates:

for i = 1:N

sumcontent(i,:) = W(i,:) * eigenvectors(i,data.modeshape);

end

data.modeshape is any number from 1 to 2N. It is the mode shape
that the user has currently chosen to visualize. Next, the actual sum
is the one-dimensional array computed by the MATLAB command
sum and stored in the variable sumterm:

sumterm = sum(sumcontent);

Note that the above lines of code is an outline of the full code, since
some special cases have to be taken into account in several places.
This is true in general in this chapter in order to keep it brief by
focusing on the important lines of code. The full code can always
be seen in the appendix B. The excerpts highlighted here only
attempts to illustrate the general idea behind the code.

Now, working through the rest of equation (3.76), the constant Bk

will be chosen so that in the visualization of the mode shapes,

max(φk(x, t)) = 0.1. (4.1)

44 visualization of beam with coupled bending and torsion vibrations

It is however much easier to ignore Bk for now, and once the com-
plete animation is computed, the whole solution is scaled to respect
this condition. Worrying only about the cosine term of (3.76), the
ndgrid function again becomes useful as the cosine term depends
on the temporal variable t while the summation term depends on
the spatial variable x.

[sumtermGRID,tpointsGRID] = ndgrid(sumterm,tpoints);

w = cos(natfreq(data.modeshape)*tpointsGRID) .* sumtermGRID;

w now is a two-dimensional array representing the solution w(x, t).
The rows of w represent x-coordinates and the columns represent
time values or frames in the animation.

Finally the solution is scaled to comply with (4.1). Computing
φ(x, t) is done completely analogous to w(x, t).

4.1.2 Natural response

If the natural response is chosen, the vibration is computed by the
function naturalresponse. A general outline of this function is
given below.

The initial conditions are given as functions of x by the user.
These are turned into one-dimensional arrays. For example the ini-
tial condition w(x, 0), which is inputted by the user as a continuous
function, is converted into a one-dimensional array of points by
computing the function value for every x-coordinate in xpoints:

initialw = data.initialw(xpoints);

where data.initialw is the function for w(x, 0) specified by the
user. Next an array Ww is computed, which is an array representing
the product Wk(x)w(x, 0), occuring on the right hand side of equa-
tion (3.86). The rows in the array represent values of k, while the
columns represent x-coordinates.

for i = 1:N

Ww(i,:) = W(i,:) .* initialw;

end

Equivalently arrays Phiphi, Wwdot and Phiphidot are computed
to match the other integrals of equations (3.86) and (3.87). The
complete right hand side of (3.86) is computed and the system is
solved for B by the MATLAB operator \.

rhs = [trapz(xpoints,Ww’) trapz(xpoints,Phiphi’)]’;

B = eigenvectors\rhs;

Note that the coefficient matrix of (3.86) is simply the array of
eigenvectors returned by eig. Computation of the constants Ak of
(3.87) is very similar in nature. It is done by

rhs = [trapz(xpoints,Wwdot’) trapz(xpoints,Phiphidot’)]’;

A = (eigenvectors*diag(natfreq(:)))\rhs;

What remains is to use equation (3.72) and (3.73) to compute
w(x, t) and φ(x, t). For w, this is done by two loops, looping over
the outer summation and the inner summation, as well as again

implementation in matlab 45

utilizing ndgrid to represent the function of two variables w(x, t) as
an array:

for n = 1:N

sumterm = 0;

for k = 1:2*N

sumterm = sumterm + (A(k)*sin(natfreq(k)*tpoints)+B(k)*cos

(natfreq(k)*tpoints)) * eigenvectors(n,k);

end

[WGRID,sumtermGRID] = ndgrid(W(n,:),sumterm);

w = w + WGRID .* sumtermGRID;

end

where sumterm being computed by the inner loop, is the inner
summation of (3.72) depending only on t.

4.1.3 Forced response

The forced response is computed by the function forcedresponse

also found in solver.m. First H of equation (3.94) is assembled,
which is straightforward:

H = [zeros(2*N) eye(2*N); -M\K zeros(2*N)];

The right hand side of equation (3.96) is computed by the nested
function odeRHS, which is used in MATLAB’s ODE solver ode45.
The external load specified by the user as a continuous function,
is converted into a one-dimensional array, the same as the initial
conditions for the natural response in the previous section.

The function odeRHS that computes the right hand side of (3.96)
has the structure

function odeRHS = RHS(t,q)

% 1. Convert external load function to one-dimensional array:

pvec = data.p(xpoints,t);

% 2. Compute the vector "f":

for n = 1:N

f(n) = -trapz(xpoints,W(n,:).*pvec);

end

for n = 1:N

f(N+n) = trapz(xpoints,Phi(n,:).*pvec*data.c);

end

% 3. Compute the vector "b":

b = [zeros(2*N,1); M\f];

% 4. Return the right hand side of the system of first order

linear ODEs:

odeRHS = H*q+b;

end

This function is used in ode45 in order to obtain a numerical
solution:

[T,Q] = ode45(@RHS,tpoints,initial);

Q is the computed function values for q. Recall from equations
(3.93) and (3.61) that Q holds the function values for rn(t) and sn(t).
It also holds function values of its derivatives, but those are of no
interest to us. We pick out the solutions for rn(t) and sn(t) from Q

by

46 visualization of beam with coupled bending and torsion vibrations

r = Q(:,1:N);

s = Q(:,N+1:2*N);

rn(t) and sn(t) are now arrays where the rows correspond to the
time values in tpoints, which can also be thought of as each row
holding the information of a single frame of the animation. The
columns correspond to the index n on rn(t) and sn(t).

The complete solution is given by (3.97) and (3.98), which are
easy to compute as arrays using ndgrid. For w(x, t):

for i = 1:N

% 1. Convert from vectors to arrays that can be multiplied like

scalars:

[WGRID,rGRID] = ndgrid(W(i,:),r(:,i));

% 2. Compute the solution by adding one term of the summation at a

time:

w = w + WGRID.*rGRID;

end

and likewise for φ(x, t).

4.2 The layout of the gui

The GUI of the program is seen in Figure 4.1. The GUI is split into
a left column holding the two primary buttons and status messages.
Input and output are split into separate panels, each featuring tabs
to navigate between input options or different output graphics.

Figure 4.1: The layout of the program’s
graphical user interface.The default output window shows the animations. The left ani-

mation shows a representation of the beam cross section, depicted
by a cross made from the radius of gyration for both axes rather
than an actual drawing of the cross section. The cross is placed at

implementation in matlab 47

the center of mass. The gyration radii are defined by

Ry =

√
Iy

A
; (4.2)

Rz =

√
Iz

A
, (4.3)

where A is the area and the second moments of area Iy and Iz have
been defined in equation (2.6). The gyration radii provides a good
indication of the distribution of material in the cross section, and
avoids the problem of having to actually draw the cross section.
See Figure 4.2 for an example of how a C-clamp cross section is
depicted by the gyration radii.

C O

Figure 4.2: Depictions of a C-clamp
cross section by the radii of gyration. C
is the center of mass and O is the shear
center.

This cross moves and rotates during playback of the animation.
The x-coordinate used by the left animation is controlled in the
Animation Controls input tab, entered as a value from zero to
unity, where zero corresponds to x = 0 and unity corresponds to
x = L. The position on the axis is illustrated on the right animation
with a vertical line.

The right animation displays bending and torsion curves. The
horizontal axis has the x-coordinates. It represents the beam length.
The bending curve displays the value of w(x, t), that is, the deflec-
tion due to bending as illustrated in Figure 2.3. The torsion curve
displays the value of φ(x, t), that is, the twist about the shear center.
Again, see Figure 2.3.

The output tab named Static Images contains two figures,
one for the bending curve and one for the torsion curve. It is not
an animation, but an image generated from MATLAB’s imagesc

command, similar to a contour plot. It is there to provide a quick
overview of the bending and torsion as functions of x and time t.
The columns represent x-coordinates, and the rows represent the
frames of the animation. The first frame is at the bottom.

The third output tab, named Visualize Coupling, gives insight
into the coupling of basis functions. See Figure (4.3). It is essentially
aboslute values of the eigenvectors being shown by MATLAB’s
imagesc command. It is all connected together by equations (3.72)
and (3.73). The matrix shown consists of the values

|v1,1| . . . |v1,2N |
...

. . .
...

|v2N,1| . . . |v2N,2N |

 . (4.4)

48 visualization of beam with coupled bending and torsion vibrations

Figure 4.3: An example of the graphic
in the Visualize Coupling output
tab. This is MATLAB’s imagesc

command used on absolute values of
the eigenvectors.

A single column corresponds to a single eigenvector and its associ-
ated eigenvalue. That means that a single column corresponds to
a single natural frequency and mode shape of the vibration. The
leftmost column corresponds to the smallest natural frequency. A
column will illustrate the coupling of basis functions Wn(x) and
Φn(x) for that specific mode shape. The rows correspond to the ba-
sis functions and they are ordered this way: The top row is W1(x).
The N’th row from the top is WN(x). Row number N + 1 from the
top is Φ1(x), so it splits between bending and torsion on the middle.
The bottom row is ΦN .

When the user has chosen to visualize a single mode shape, that
is essentially a single eigenvector, or equivalently, a single column
of (4.4) being used in the animations, as discussed in section (3.3.1).
So it is possible to predict from the Visualize Coupling tab which
basis functions W(x) and Φ(x) will dominate a particular natural
frequency. Or in what proportion bending and torsion occur at a
particuar natural frequency. If the distance between the shear center
and the center of mass c is set to zero, then the bending and torsion
vibrations are not coupled at all. This is directly visible from this
graphic, see Figure 4.4. If we gradually increase the value of c, then
we also see the coupling becoming gradually more apparent from
this graphic.

Figure 4.4: When the distance between
the shear center and center of mass
is set to zero c = 0, the system is
uncoupled. It is clear from this image
that there is no coupling of basis
functions.

implementation in matlab 49

2 Jan Becker Høgsberg and Steen
Krenk. Analysis of moderately
thin-walled beam cross-sections
by cubic isoparametric elements.
Computers and Structures, 134:88–
101, 2014. ISSN 0045-7949. doi:
10.1016/j.compstruc.2014.01.002

4.2.1 Specifying input

Most of the input fields aims to be rather self explanatory. There
is a tab for geometric properties of the beam and its cross section,
including such options as the beam length or the distance between
the shear center and the center of mass. There is no input for the
polar moment of area Ip. Instead there are inputs for Iz, which
there would have to be anyway, and an input for Iy. The polar
moment of area are computed from these by

Ip = Iz + Iy. (4.5)

There are also tabs for material properties and for choosing
support conditions at the beam ends. And there is an input tab
containing parameters for the animation such as the animation
duration and framerate, as well as the time range of the animation
from t = 0 to a value specified by the user.

The main input tab is used to specify the type of problem to
visualize. The user may choose between visualizing a single mode
shape, the natural response or the forced response. The number of
terms N to include in the series expansions equations (3.21) and
(3.33) is also specified here. When visualizing a single mode shape,
the user is asked to provide a single value to specify which mode
shape. That value may be anything from 1 to 2N, as there are 2N
natural frequencies and mode shapes.

The initial conditions are entered as functions of x. Incidentally,
the beam length L is recognised as the variable L. This means for
example that if we have selected fixed-fixed supports for torsion,
and wanted to say that the initial torsion is a half-period of a sine
curve with amplitude 0.1, then the input for φ(x, 0) may be entered
as 0.1*sin(pi*x/L). Care must be taken to give reasonable initial
conditions, depending on the chosen support conditions! This is not
especially easy for the majority of the support types.

When visualizing a forced response, the external load p(x, t)
is entered in the same way, only it may also include a temporal
variable t. A constant uniformly distributed load would be entered
as just a number with no dependence on x or t. At present, the load
has to be entered as a function. Consequently, a concentrated load
cannot be entered. The reason for this is touched upon in section
4.7.

4.2.2 The default input

The default input which fills the input fields when the program is
launched matches the cross section shown on Figure 4.5. It is a C-
clamp profile. The torsional stiffness parameter K and the position
of the shear center and the center of mass, were all computed in the
MATLAB program BeamSec2.

At default the beam length is set to 40 meters, and the material
parameters correspond to steel.

50 visualization of beam with coupled bending and torsion vibrations

C O

1m

2m

0.1m Figure 4.5: The default input values
are based on this cross-section.

4.3 Overview of code files

The following is an overview of the files that make up the program.

launcher.m The only file a user should have to run, as it opens the
GUI window. It also adds the necessary directories to the path
for the duration of the current session before it calls opengui.m.

opengui.m Launches an instance of the GUI window. All the GUI
elements and in general everything concerning the GUI layout is
defined in this function. Apart from its main function, it includes
callback functions for the two buttons Compute and Playback, as
well as callback functions for radio button groups.

defaults.m Contains default values for the GUI input parameters.
When this function is called, the default values are written to the
input fields. Calling this function is the last action performed by
opengui when the GUI is launched, and defaults is only called
this once. The purpose of separating this functionality into its
own function, is to make it very easy to change what default
values are used by the program.

collectinput.m Collects user input from the input tabs in the GUI,
and saves it into guidata, a structure used to pass information
around between all the functions of the GUI, see section 4.5.

solver.m Computes the vibration w(x, t) and φ(x, t) from the input
values. This is the implementation of the results from chapter 3.

plotting.m Turns the solution obtained by solver into graphics
and animations, and updates the output tabs of the GUI.

playback.m Plays the animation. An entire function has been
written for the purpose of animating two animations at the
same time, as no built in MATLAB command supports this. This
function is described in section 4.6.

notify.m Updates the leftmost panel of the GUI with information
to the user. This function is called several times from within
other functions, in order to update the panel with the status of
the GUI.

implementation in matlab 51

When the program is launched by calling launcher, this in
turn calls opengui.m, which calls defaults.m as its last action. See
Figure (4.6). Most of the other files are activated when the Compute

button is pressed. The process set in motion by the Compute button
is illustrated in Figure 4.7. The button click is first picked up by
its callback function defined in opengui. The callback function
then calls collectinput, solver and plottng in succession. The
Playback button only calls playback.m.

launcher.m

opengui.m defaults.m

Figure 4.6: When the software is
launched, opengui.m is called, which
in turn calls defaults.m.

Compute button

collectinput.m

solver.m notify.m

plotting.m notify.m

Figure 4.7: The Compute button calls
three functions, collectinput, solver
and plotting. During the computa-
tion, several calls are made to notify

as well.

4.4 The MATLAB Layout Toolbox by The MathWorks Ltd

The MATLAB graphical user interface or GUI is built using a small
toolbox called the MATLAB Layout Toolbox by The MathWorks Ltd.
This toolbox is not a native part of MATLAB, and has to be loaded
onto the path separatedly. The necessary files are included with the
MATLAB files for the program handed in as part of this bachelor’s
project.

The toolbox lets the user arrange GUI elements in much the
same way as HTML does, by nesting bodies of content within other
bodies and distributing elements either horizontally or vertically. It
is a small collection of rather simple layout primitives, which offer
great flexibility when combined.

The advantages of using this over MATLAB’s built in GUIDE
tool for creating GUIs, is that it allows precise arrangement in a
source format that is entirely text based and human readable. In
contrast to this, creating GUIs with GUIDE is mostly a drag and
drop kind of workflow, not one of manually writing code. The
downside to the GUIDE approach, besides the difficulties concern-
ing precise arrangement, is that the code created by MATLAB,
describing the GUI layout, is contained in a .fig file format which is
not human readable. The GUI in this project was build in part as a
learning experience. As I had no prior experience with MATLAB,
being able to see the gears and wheels and inner workings of the
code comprising the GUI was much appreciated. In addition, the
software is intended as a tool for others to use and possibly modify.

52 visualization of beam with coupled bending and torsion vibrations

Therefore, it was seen as a great advantage to have the code be
human readable and working with the Layout Toolbox has been an
excellent experience.

4.5 Passing data and handles between functions

The GUI is made up of mostly dynamic elements and of few static
ones. Dynamic elements are any elements that changes its content
at some point. Examples are input fields, output graphics, radio
buttons and user messages. (radio buttons groups of round but-
tons where only one may be selected at any time). Any uicontrol

element (which is a typical MATLAB GUI element like a button)
created with a Tag property automatically receives a handle by
MATLAB. These handles are retrieved by calling the guihandles

function. However, some elements; the axes and the implementa-
tion of the radio buttons, are not native GUI elements and are there-
fore not compatible with the guihandles structure. The handles to
these elements are static, but are instead assigned specifically and
stored in guidata. A structure used to store dynamic data in the
GUI and pass it around between functions.

guidata is used to store any data passed between different
functions. In essence, a function will first load the current data
from guidata, then perform its purpose with that data, and finally
store its results by updating guidata with any changes. Taking
solver.m as an example, the function first loads the data from
guidata in order to get the user input, which has been put into
guidata by collectinput.m after the Compute button has been
clicked. It then computes solutions and stores them back into
guidata for plotting.m to use next.

When data is loaded at the start of a function through guidata,
it is loaded into the variable data and the actual data is stored in
fields. Example: data.L is the beam length.

4.6 Rendering and playing back the animations

Since MATLAB’s built-in animation function movie can only handle
one animation at a time, it was necessary to write a complete
function playback.m to play back two simultaneous animations.
The way in which this is achieved also affects the way in which the
animations are pre-rendered in plotting.m.

To achieve two simultaneous animations, the frames of an anima-
tion are not grapped as snapshots of the axes as is the case when
using movie with getframe. Instead the solution to the problem con-
ceived in this project, is to render every line or point of every frame
of the animation into the same axes by multiple uses of the plot

command. Handles to these layers of lines and points are saved and
stored into guidata, which allow them to be turned on and off, and
that is what playback.m does. An animation is really rendered to
look like Figure 4.8, but never are several layers visible at the same

implementation in matlab 53

time.

Figure 4.8: In order to achieve simul-
taneously playing animations, an
animation is rendered as a single plot,
but with its content sorted into layers
that can be switched on and off. This
shows an animation rendered with all
layers turned on.

In order to render all lines and points into the same set of axes,
the hold property of the axes are set to on, which makes MATLAB
draw on top of the existing content on the axes as the frames are
rendered:

hold(data.animationleft,’on’);

hold(data.animationright,’on’);

data.animationleft and data.animationright are handles to the
axes. Handles to every plot command of used in the rendering of
each frame are then saved into one dimensional arrays. Taking the
right animation as an example, this is achieved in the following
loop:

for frame=1:data.nframes

%bending curve

y = data.w(:,frame);

layerBendingCurve(frame) = plot(data.animationright,data.

xpoints,y,’k’,’visible’,’off’);

%twist curve

y = data.phi(:,frame);

layerTorsionCurve(frame) = plot(data.animationright,data.

xpoints,y,’r’,’visible’,’off’);

end

The arrays layerBendingCurve and layerTorsionCurve hold han-
dles to the curves of the right plot. Inside playback.m, which loops
over the frames, these are then switched on and off by the following
code:

% Turn off previous frame:

set(data.layerBendingCurve(frame-1),’visible’,’off’);

set(data.layerTorsionCurve(frame-1),’visible’,’off’);

% Turn on current frame:

set(data.layerBendingCurve(frame),’visible’,’on’);

set(data.layerTorsionCurve(frame),’visible’,’on’);

The above few lines are just an example to illustrate how the ani-
mation is handled. The above are only a part of a larger loop in the
actual code, since the loop in playback.m also has to perform some
checks and actions at the start and end of the loop. See the full code
in the appendix section B.7.

54 visualization of beam with coupled bending and torsion vibrations

4.7 Notes on the development process

As any novice in MATLAB with little knowledge of the language is
prone to do, solver.m was first build using anonymous functions
for many expressions. For example the basis functions Wn(x) and
Φn(x) were defined as anonymous functions. An anonymous
function in MATLAB would look like e.g.

f = @(x) sin(x)

Down through the code, other functions or expressions were
defined on top of the previously defined anonymous functions.
Integrations were performed by the MATLAB integral command.
Ultimately a triple loop would compute the numerical values of the
solution used by plotting.m to generate the animations. This triple
loop would loop over every x value (approximately 500 values, one
value for each pixel on the x axis of the animation), every t value
which is the number of frames in the animation, and a third param-
eter which looped through terms in the sums of equation (3.72) and
(3.73). The complete solver function was implemented like this,
and the software worked just fine except for being painfully slow,
requiring the user to wait 8-10 seconds each time the Compute but-
ton was pressed. These speed issues were seen as problematic for a
program which is meant to be played with by students, where the
learning comes from repeatedly trying different input parameters.
As it became apparent that the approach taken was not catering
to MATLAB’s strengths, the whole solver function was rewritten,
resulting in a massive improvement in evaluation time. The result is
that instead of anonymous functions, the intermediary results are
kept as just lots of numerical values in arrays. Use of MATLAB’s
integral function was replaced by numerical integrations on ar-
rays performed by trapz, and costly loops were replaced by matrix
manipulations.

The advantages of the first approach were that the code more
closely resembled the equations in chapter 3. Also the use of anony-
mous functions allowed things like the dirac delta to be used when
specifying an external load, as this is handled correctly by MAT-
LAB’s integral function. With the way the program currently
works (by using arrays of numerical points with some set resolution
instead of anonymous functions), it would require a little rewriting
to allow a diraq delta to be used in specifying an external load. The
consequence is that a concentrated external force cannot currently
be entered. The speed increase is well worth it though.

The GUI was also first build as a single tab including all input
fields and output. As the number of input options gradually grew,
the GUI started to become relatively large and confusing at first
sight. This led to rebuilding the GUI from scratch, now allowing
input fields and output graphics to be split into tabs, as well as
gaining a left margin used to display status messages.

implementation in matlab 55

4.8 Modification to the Layout Toolbox

A single parameter was changed in one of the files of the Layout
Toolbox used when designing the GUI in order to allow wider tabs.
Line 29 was changed in TabPanel.m of the Layout Toolbox from its
default value of 50 to 110:

28 properties

29 TabSize = 110

30 TabPosition = ’top’

31 end

4.9 Known bugs

The output from MATLAB’s eig function sometimes suddenly
becomes unpredictable. This bug has been observed to appear
once the largest eigenvalue is above 108, corresponding to natural
frequencies of more than 1500 cycles per second. The program
tries to detect this bug by looking for negative eigenvalues, which
seem to accompany this bug. When it is detected, an exception is
thrown and a message is displayed with a warning. The user can
then modify the input and try again.

This sometimes happen when a large N is specified, because it
causes a large number of eigenvalues to be computed. The largest
eigenvalues apparently become too much to handle. This looks
like a bug in MATLAB’s eig command. Whether it is or not, I am
not yet certain. However, as the eig command is copyrighted by
MathWorks and its source cannot be viewed, and since the program
heavily depends on the use of eig, this bug has not been fixed yet.

4.10 Further development

It would be interesting to do error analysis on the solutions found
for the coupled equations of motion. Most notably, what is the
effect of increasing the number of terms N in the expansion? At
what angle of twist is the assumption of linearity no longer viable?
Carrying out this error analysis has not been prioritized because
the purpose of the solutions and the software is to give students
intuitive feel for the vibrations. It is of minor importance to this
purpose whether the solution is a few percent off target. However, a
warning is displayed to the user if the angle of twist computed for
the animation reaches above 0.1 radians.

It has been the intention to include a save button to save the
current input. Or even to save input automatically so the program
would load the input of the last session at launch. Accompanyed
by a Reset to defaults button this would be a nice feature to have.
As it stands, the user loses all input when the program is closed. It
is easy to edit defaults.m by hand, but that is not quite the same.
This save feature would not be difficult to implement by using a

56 visualization of beam with coupled bending and torsion vibrations

function similar to defaults.m, however it all takes time, and this
feature remains an idea for further development.

A complete function has been written to export the animations
to movie files. This feature was a biproduct of searching for a
way to show two simultaneous animations, it was not written
because the ability to export movies has been prioritized. However
it works perfectly except labels and tick marks are not included in
the exported movie. Because this bug has not been easy to fix, the
ability to export animations have ultimately not been included in
the program. The code is still there among the other code files in
the form of the file exportanimation.m.

At present it is a little difficult to specify initial conditions for
the natural response, as they have to be specified as functions.
This does have utility, as it represents freedom, but it might be
nice to add functionality that allows the user to select certain basis
functions which are then excited and used as initial conditions.

Another inviting idea for visualization is to have the beam
drawn in 3D and animate that. There is no need to draw the actual
cross section, as the representation by the gyration radii could
also be used in 3D. The vibration results from this program could
potentially be exported into another program that does this, even
with an actual drawing of the cross section.

The input of especially the material properties might be done by
dropdown menues with pre-defined materials.

A
Appendix

A.1 Relation between moment of inertia and polar moment of
area

The centroidal moment of inertia ICM about an axis parallel to the x
axis of Figure 2.2 and going through the center of mass is defined
as Im =

∫
V ρ(r)r2 dV. r is the distance from a point to the axis and

V is the volume. The polar moment of area about the same axis is
Ip =

∫
A r2 dA.

If the cross-section is homogenous, then the density ρ is a con-
stant. For a uniform beam segment of length dx, the distance r does
not depend on x. This leads to

ICM =
∫

V
ρ(r)r2 dV

= ρ
∫

V
r2 dV

= ρ
∫

A

∫ x+dx

x
r2 dx dA

= ρ dx
∫

A
r2 dA

= ρ dx Ip. (A.1)

A.2 Orthogonality conditions

Four conditions of orthogonality are shown below. Two for bending
basis functions, and two for torsion basis functions. Taking (3.5) as
a starting point, take two equations of differing indices

W ′′′′n − α4
nWn = 0; (A.2)

W ′′′′k − α4
kWk = 0. (A.3)

Multiply by Wk and Wn respectively and integrate over the beam
length to get

∫ L

0
WkW ′′′′n dx− α4

n

∫ L

0
WkWn dx = 0; (A.4)∫ L

0
WnW ′′′′k dx− α4

k

∫ L

0
WnWk dx = 0. (A.5)

58 visualization of beam with coupled bending and torsion vibrations

Integration by parts yields∫ L

0
W ′′k W ′′n dx− α4

n

∫ L

0
WkWn dx = 0; (A.6)∫ L

0
W ′′n W ′′k dx− α4

k

∫ L

0
WnWk dx = 0, (A.7)

where the byproducts [WkW ′′′n]L0 and [W ′kW ′′n]L0 are not written, as
the boundary conditions forces them to be equal to zero. Subtract-
ing the equations from each other leaves(

α4
k − α4

n

) ∫ L

0
WkWn dx = 0. (A.8)

As α4 describes the spatial frequency of the basis function, k 6= n
implies α4

k 6= α4
n, which further implies that

∫ L

0
WkWn dx = 0, for k 6= n. (A.9)

This is the first condition of orthogonality for the bending basis
functions.

Divide (A.6) and (A.7) by α4
n and α4

k respectively to get

1
α4

n

∫ L

0
W ′′k W ′′n dx−

∫ L

0
WkWn dx = 0; (A.10)

1
α4

k

∫ L

0
W ′′n W ′′k dx−

∫ L

0
WnWk dx = 0. (A.11)

Subtract the equations from each other to get(
1

α4
n
− 1

α4
k

) ∫ L

0
W ′′k W ′′n dx = 0. (A.12)

Then∫ L

0
W ′′k W ′′n dx = 0, for k 6= n, (A.13)

which is the second condition of orthogonality for the bending basis
functions.

Now, beginning from (3.25) and writing two equations;

Φ′′n + β2
nΦn = 0; (A.14)

Φ′′k + β2
kΦk = 0, (A.15)

multiply by Φk and Φn respectively, integrate along the beam
length and perform integration by parts to get

−
∫ L

0
Φ′kΦ′n dx + β2

n

∫ L

0
ΦkΦn dx = 0; (A.16)

−
∫ L

0
Φ′nΦ′k dx + β2

k

∫ L

0
ΦnΦk dx = 0. (A.17)

Subtracting these equation from each other, or first dividing by βn

and βk respectively, and then subtracting them from each other

appendix 59

leads to the two equations(
β2

k − β2
n

) ∫ L

0
ΦkΦn dx = 0; (A.18)(

1
β2

n
− 1

β2
k

) ∫ L

0
Φ′kΦ′n dx = 0. (A.19)

This implies that∫ L

0
ΦkΦn dx = 0, for k 6= n; (A.20)∫ L

0
Φ′kΦ′n dx = 0, for k 6= n. (A.21)

Which are the orthogonality conditions for the torsion basis func-
tions.

B
Code

B.1 launcher.m

1 %% LAUNCHER

2 % This file adds code directories to the path and launches the program GUI.

3

4 %---%

5 %% Add code to the path.

6 % This is not permanent - it disappears after the current session.

7 thisdir = fileparts(mfilename(’fullpath’));

8 fprintf(’Adding the following directories to the path for the duration of the current session:\n’);

9 dirs = {

10 fullfile(thisdir)

11 fullfile(thisdir, ’GUITools’)

12 fullfile(thisdir, ’GUITools’, ’Patch’)

13 fullfile(thisdir, ’code’)

14 };

15 for dd=1:numel(dirs)

16 addpath(dirs{dd});

17 fprintf(’+ %s\n’, dirs{dd});

18 end

19

20 %---%

21 %% Open GUI:

22 opengui()

62 visualization of beam with coupled bending and torsion vibrations

B.2 opengui.m

1 function opengui

2 % This will open the GUI window.

3 % The contents of this file both constructs and arranges elements inside a

4 % GUI window. At the bottom of this file are callback functions for GUI

5 % elements, which determines actions taken by the GUI when the user

6 % interacts with it.

7 %

8 % This GUI is built using GUI Layout Toolbox version 1.17 from MathWorks

9 % Ltd.

10 % This makes building the GUI similar to HTML/CSS layout, by allowing

11 % nested elements as well as layout by specifying element properties such as

12 % padding.

13

14 efh = 27; % A constant used throughtout for the vertical height of input fields. efh is for EditableFieldHeight

15 p = 10; % constant for padding

16 s = 5; % constant for spacing

17

18 %---%

19 %% Open GUI window

20 window = figure(...

21 ’Name’, ’Visualization of beam with coupled bending and torsion vibrations’, ...

22 ’Position’, [70 100 1160 600], ...

23 ’MenuBar’, ’none’, ...

24 ’Toolbar’, ’none’, ...

25 ’NumberTitle’, ’off’);

26

27 %---%

28 %% Setup tabbed layout

29 % Create the horizontal panel which holds the tabs:

30 tabs = uiextras.TabPanel(...

31 ’Parent’, window);

32 % Create main tab, horizontally distributed:

33 maintab = uiextras.HBox(...

34 ’Parent’, tabs);

35 % Other tabs are created later, once this main tab has been filled

36

37 %---%

38 %% Create left window with updating text and buttons

39 % Create a column for holding the pushbuttons and the message box:

40 leftcolumn = uiextras.VBox(...

41 ’Parent’, maintab, ...

42 ’Padding’, p, ...

43 ’Spacing’, s);

44 % Create a button for preparing the animation:

45 uicontrol(...

46 ’Parent’, leftcolumn, ...

47 ’Style’, ’pushbutton’, ...

48 ’String’, ’Compute’, ...

49 ’Tag’,’computebutton’, ...

50 ’Callback’,@compute);

51 % Create a for playing back the animation:

52 uicontrol(...

53 ’Parent’, leftcolumn, ...

54 ’Style’, ’pushbutton’, ...

55 ’String’, ’Playback’, ...

56 ’Enable’, ’Off’, ... % Disable until animation is prepared.

57 ’Tag’,’playbackbutton’, ...

58 ’Callback’,@playbackanimation);

59 % Create a line of text for showing the value of t while the animation runs.

60 % This cannot be displayed as part of the larger box of text below,

61 % because this is updated for every frame during playback, and it is too

62 % intensive so the playback will lag a lot, even on a decent pc. But it works

63 % ok with its own box.

64 uicontrol(...

65 ’Parent’, leftcolumn, ...

code 63

66 ’Style’,’text’, ...

67 ’Tag’,’animationtime’);

68 % Create the message box which holds info to the user. This is updated by

69 % subfunctions to reflect the current state of the program:

70 uicontrol(...

71 ’Parent’, leftcolumn, ...

72 ’Style’,’text’, ...

73 ’Tag’,’console’, ...

74 ’HorizontalAlignment’,’left’);

75 % Set a fixed height of buttons:

76 set(leftcolumn, ’Sizes’, [40 40 20 -1])

77

78 %---%

79 %% Create Output and Input panels

80 % Hold the panels in a vertical box:

81 panelvbox = uiextras.VBox(...

82 ’Parent’, maintab);

83 % by now the maintab has been fully filled, so define its spacing

84 % distribution:

85 set(maintab, ’Sizes’, [200 -1]) % [leftcolumn panelvbox] in pixels. -1 means auto scale with the window.

86 % Create output panel:

87 outputpanel = uiextras.BoxPanel(...

88 ’Parent’, panelvbox, ...

89 ’Title’, ’Output’);

90 outputpaneltabs = uiextras.TabPanel(...

91 ’Parent’,outputpanel);

92 % Create input panel:

93 inputpanel = uiextras.BoxPanel(...

94 ’Parent’, panelvbox, ...

95 ’Title’, ’Input’);

96 inputpaneltabs = uiextras.TabPanel(...

97 ’Parent’,inputpanel);

98 set(panelvbox, ’Sizes’, [-1 180])

99

100 %---%

101 %% Fill output panel animation tab

102 % Create horizontal box that holds the animation

103 outputanimationhbox = uiextras.HBox(...

104 ’Parent’, outputpaneltabs, ...

105 ’Padding’, 0, ...

106 ’Spacing’, 0);

107 % Create axes for the gyration radius animation (left):

108 % I found it necessary to create a fresh VBoc or HBox to hold JUST the axes

109 % when using the ’OuterPosition’. This is likely a bug in the GUI Layout Toolbox,

110 % but this little hack gets around it. Without this, the spacing and padding is

111 % way off.

112 animationleftcontainer = uiextras.VBox(...

113 ’Parent’, outputanimationhbox);

114 data.animationleft = axes(...

115 ’Parent’, animationleftcontainer, ...

116 ’ActivePositionProperty’, ’OuterPosition’);

117 % Create axes for plotting the bending/torsion animation (right):

118 animationrightcontainer = uiextras.VBox(...

119 ’Parent’, outputanimationhbox);

120 data.animationright = axes(...

121 ’Parent’, animationrightcontainer, ...

122 ’ActivePositionProperty’, ’OuterPosition’);

123 % Allocate a fixed width to the left plot, and let the right plot scale

124 % with the window

125 set(outputanimationhbox, ’Sizes’, [-1 -1.5])

126

127 %---%

128 %% Fill output panel static tab

129 outputstatichbox = uiextras.HBox(...

130 ’Parent’, outputpaneltabs, ...

131 ’Padding’, p, ...

132 ’Spacing’, 2*p);

133 % Create static text

64 visualization of beam with coupled bending and torsion vibrations

134 text = sprintf(’\nLEFT: Bending.\nRIGHT: Torsion.\n\nThis provides a quick overview of the vibration. It contains

the same information as the animation.\n\nThe left plot shows deflection due bending and the right shows

torsional deflection. The horizontal axes spans the x coordinates from 0 to L. The vertical axes are time

with t=0 at the bottom. \n\nThis is the standard MATLAB color scale, from dark blue to dark red, and light

green as the middle value. Go to the animation tab to read the actual values off the axes, as the color scale

is not displayed here.’);

135 uicontrol(...

136 ’Parent’, outputstatichbox, ...

137 ’Style’,’text’, ...

138 ’HorizontalAlignment’,’left’, ...

139 ’String’,text);

140 % Create axes for bending (left):

141 data.staticaxesbending = axes(...

142 ’Parent’, outputstatichbox, ...

143 ’ActivePositionProperty’, ’Position’, ...

144 ’HandleVisibility’, ’Callback’);

145 set(data.staticaxesbending,’XTickLabel’,’’,’YTickLabel’,’’)

146 % Create axes for torsion (right):

147 data.staticaxestorsion = axes(...

148 ’Parent’, outputstatichbox, ...

149 ’ActivePositionProperty’, ’Position’, ...

150 ’HandleVisibility’, ’Callback’);

151 set(data.staticaxestorsion,’XTickLabel’,’’,’YTickLabel’,’’)

152 set(outputstatichbox,’Sizes’,[200, -1 -1])

153

154 %---%

155 %% Fill output panel coupling tab

156 outputcouplinghbox = uiextras.HBox(...

157 ’Parent’, outputpaneltabs, ...

158 ’Padding’, p, ...

159 ’Spacing’, s);

160 % Create static text:

161 text = sprintf(’\nThis shows the coupling of bending and torsion basis functions for individual mode shapes.\n\

nEach column represents a mode shape corresponding to a natural frequency. The first mode shape,

corresponding to the lowest natural frequency, appears in the leftmost column, and the last modeshape appears

in the rightmost column.\n\nThe rows represent basis functions in the series expansion, with the upper half

representing bending basis functions, and the lower half representing torsion basis functions.\n\nThis shows

absolute values, in a standard MATLAB color scale, where the range is from dark blue to dark red.\n\nTo get a

feel for it, try an uncoupled system by setting c=0 (the shear center to elastic center distance under the

Geometric Properties tab)’);

162 uicontrol(...

163 ’Parent’, outputcouplinghbox, ...

164 ’Style’,’text’, ...

165 ’HorizontalAlignment’,’left’, ...

166 ’String’, text);

167 uiextras.Empty(...

168 ’Parent’,outputcouplinghbox);

169

170 % Create axes:

171 test = uiextras.VBox(...

172 ’Parent’, outputcouplinghbox);

173 data.staticaxescoupling = axes(...

174 ’Parent’, test, ...

175 ’ActivePositionProperty’, ’OuterPosition’, ...

176 ’HandleVisibility’, ’Callback’);

177 set(data.staticaxescoupling,’XTickLabel’,’’,’YTickLabel’,’’)

178 set(outputcouplinghbox, ’Sizes’, [250 -1.3 -5])

179

180 outputpaneltabs.TabNames = {’Animation’, ’Static Images’, ’Visualize Coupling’};

181 outputpaneltabs.SelectedChild = 1; % Open the program with the first tab active

182

183 %---%

184 %% Load, initial conditions and modeshapes.

185 maininputtab = uiextras.HBox(...

186 ’Parent’, inputpaneltabs, ...

187 ’Padding’, p, ...

188 ’Spacing’, 20);

189 maininputtabvbox = uiextras.VBox(...

code 65

190 ’Parent’, maininputtab, ...

191 ’Spacing’, s);

192 maininputtabhbox = uiextras.HBox(...

193 ’Parent’, maininputtabvbox, ...

194 ’Spacing’, 10);

195 % Disstribute into columns:

196 maininputcolumn1 = uiextras.VBox(...

197 ’Parent’, maininputtabhbox, ...

198 ’Spacing’, s);

199 maininputcolumn2 = uiextras.VBox(...

200 ’Parent’, maininputtabhbox, ...

201 ’Spacing’, s);

202 set(maininputtabhbox, ’Sizes’, [300 300])

203 %% Create an input for N:

204 Nhbox = uiextras.HBox(...

205 ’Parent’, maininputcolumn1, ...

206 ’Spacing’, s);

207 uicontrol(...

208 ’Parent’, Nhbox, ...

209 ’Style’,’text’, ...

210 ’HorizontalAlignment’, ’left’, ...

211 ’String’,’Expansion Terms N:’);

212 uicontrol(...

213 ’Parent’, Nhbox, ...

214 ’Style’,’edit’, ...

215 ’backgroundcol’, [1 1 1], ...

216 ’Callback’,@callbackinput, ...

217 ’Tag’,’N’);

218 set(Nhbox, ’Sizes’, [150 50])

219 %% Create an input for selecting modeshape:

220 modeshapehbox = uiextras.HBox(...

221 ’Parent’, maininputcolumn2, ...

222 ’Spacing’, s);

223 uicontrol(...

224 ’Parent’, modeshapehbox, ...

225 ’Style’,’text’, ...

226 ’HorizontalAlignment’, ’left’, ...

227 ’String’,’Modeshape (Choose from 1 to 2N):’);

228 uicontrol(...

229 ’Parent’, modeshapehbox, ...

230 ’Style’,’edit’, ...

231 ’backgroundcol’, [1 1 1], ...

232 ’Callback’,@callbackinput, ...

233 ’Tag’,’modeshape’);

234 set(modeshapehbox, ’Sizes’, [150 50])

235

236 %% Create inputs for initial conditions:

237 initialwhbox = uiextras.HBox(...

238 ’Parent’, maininputcolumn1, ...

239 ’Spacing’, s);

240 uicontrol(...

241 ’Parent’, initialwhbox, ...

242 ’Style’,’text’, ...

243 ’HorizontalAlignment’, ’left’, ...

244 ’String’,’Initial Bending, w(x,0) [m]:’);

245 uicontrol(...

246 ’Parent’, initialwhbox, ...

247 ’Style’,’edit’, ...

248 ’backgroundcol’, [1 1 1], ...

249 ’Callback’,@callbackinput, ...

250 ’Tag’,’initialw’, ...

251 ’Enable’,’off’);

252 set(initialwhbox, ’Sizes’, [150 -1])

253 initialphihbox = uiextras.HBox(...

254 ’Parent’, maininputcolumn1, ...

255 ’Spacing’, s);

256 uicontrol(...

257 ’Parent’, initialphihbox, ...

66 visualization of beam with coupled bending and torsion vibrations

258 ’Style’,’text’, ...

259 ’HorizontalAlignment’, ’left’, ...

260 ’String’,’Initial Torsion, phi(x,0) [rad]:’);

261 uicontrol(...

262 ’Parent’, initialphihbox, ...

263 ’Style’,’edit’, ...

264 ’backgroundcol’, [1 1 1], ...

265 ’Callback’,@callbackinput, ...

266 ’Tag’,’initialphi’, ...

267 ’Enable’,’off’);

268 set(initialphihbox, ’Sizes’, [150 -1])

269 initialwdothbox = uiextras.HBox(...

270 ’Parent’, maininputcolumn2, ...

271 ’Spacing’, s);

272 uicontrol(...

273 ’Parent’, initialwdothbox, ...

274 ’Style’,’text’, ...

275 ’HorizontalAlignment’, ’left’, ...

276 ’String’,’Initial Bending Velocity, d/dt w(x,0) [m/s]:’);

277 uicontrol(...

278 ’Parent’, initialwdothbox, ...

279 ’Style’,’edit’, ...

280 ’backgroundcol’, [1 1 1], ...

281 ’Callback’,@callbackinput, ...

282 ’Tag’,’initialwdot’, ...

283 ’Enable’,’off’);

284 set(initialwdothbox, ’Sizes’, [150 -1])

285 initialphidothbox = uiextras.HBox(...

286 ’Parent’, maininputcolumn2, ...

287 ’Spacing’, s);

288 uicontrol(...

289 ’Parent’, initialphidothbox, ...

290 ’Style’,’text’, ...

291 ’HorizontalAlignment’, ’left’, ...

292 ’String’,’Initial Torsion Velocity, d/dt phi(x,0) [rad/s]:’);

293 uicontrol(...

294 ’Parent’, initialphidothbox, ...

295 ’Style’,’edit’, ...

296 ’backgroundcol’, [1 1 1], ...

297 ’Callback’,@callbackinput, ...

298 ’Tag’,’initialphidot’, ...

299 ’Enable’,’off’);

300 set(initialphidothbox, ’Sizes’, [150 -1])

301

302 set(maininputcolumn1, ’Sizes’, [efh efh efh])

303 set(maininputcolumn2, ’Sizes’, [efh efh efh])

304

305 %% Create an input for specifying load:

306 loadhbox = uiextras.HBox(...

307 ’Parent’, maininputtabvbox, ...

308 ’Spacing’, s);

309 uicontrol(...

310 ’Parent’, loadhbox, ...

311 ’Style’,’text’, ...

312 ’HorizontalAlignment’, ’left’, ...

313 ’String’,’Load p(x,t) [kN/m]:’);

314 uicontrol(...

315 ’Parent’, loadhbox, ...

316 ’Style’,’edit’, ...

317 ’backgroundcol’, [1 1 1], ...

318 ’Callback’,@callbackinput, ...

319 ’Tag’,’load’, ...

320 ’Enable’,’off’);

321 set(loadhbox, ’Sizes’, [150 -1])

322 set(maininputtabvbox, ’Sizes’, [3*efh+2*s efh])

323

324 %% Radiobuttons which chooses the solver that’s used

325 maininputradiobuttons = uiextras.VBox(...

code 67

326 ’Parent’, maininputtab, ...

327 ’Spacing’, s);

328 data.solverhandle(1) = uicontrol(...

329 ’Parent’, maininputradiobuttons, ...

330 ’Style’, ’radiobutton’, ...

331 ’Callback’, @radiosolver, ...

332 ’String’, ’Individual Mode Shape’, ...

333 ’Value’, 1); % set the whole solution as default

334 data.solverhandle(2) = uicontrol(...

335 ’Parent’, maininputradiobuttons, ...

336 ’Style’, ’radiobutton’, ...

337 ’Callback’, @radiosolver, ...

338 ’String’, ’Harmonic Oscillation With Initial Conditions (Advanced)’, ...

339 ’Value’, 0);

340 data.solverhandle(3) = uicontrol(...

341 ’Parent’, maininputradiobuttons, ...

342 ’Style’, ’radiobutton’, ...

343 ’Callback’, @radiosolver, ...

344 ’String’, ’Load (Uses Numerical Solver)’, ...

345 ’Value’, 0);

346 set(maininputradiobuttons, ’Sizes’, [efh efh efh])

347 set(maininputtab, ’Sizes’, [610 -1])

348

349 %---%

350 %% Input panel animation controls tab

351 animationcontroltab = uiextras.HBox(...

352 ’Parent’, inputpaneltabs, ...

353 ’Padding’,p);

354 % Create a vertical box to hold input fields

355 animationcontrolvbox = uiextras.VBox(...

356 ’Parent’, animationcontroltab, ...

357 ’Spacing’,s);

358 set(animationcontroltab, ’Sizes’, [300])

359 %% Create input for the x-coordinate of the gyration radius plot:

360 xcoorhbox = uiextras.HBox(...

361 ’Parent’, animationcontrolvbox, ...

362 ’Spacing’, s);

363 uicontrol(...

364 ’Parent’, xcoorhbox, ...

365 ’Style’,’text’, ...

366 ’HorizontalAlignment’,’left’, ...

367 ’String’,’x-Coordinate For The Left Animation (From 0 to 1):’);

368 uicontrol(...

369 ’Parent’, xcoorhbox, ...

370 ’Style’,’edit’, ...

371 ’backgroundcol’, [1 1 1], ...

372 ’Callback’,@callbackinput, ...

373 ’Tag’,’xGyration’);

374 set(xcoorhbox, ’Sizes’, [150 100])

375 %% Create an input for FPS:

376 frameratehbox = uiextras.HBox(...

377 ’Parent’, animationcontrolvbox, ...

378 ’Spacing’, s);

379 uicontrol(...

380 ’Parent’, frameratehbox, ...

381 ’Style’,’text’, ...

382 ’HorizontalAlignment’,’left’, ...

383 ’String’,’Animation framerate [fps]:’);

384 uicontrol(...

385 ’Parent’, frameratehbox, ...

386 ’Style’,’edit’, ...

387 ’backgroundcol’, [1 1 1], ...

388 ’Callback’,@callbackinput, ...

389 ’Tag’,’fps’);

390 set(frameratehbox, ’Sizes’, [150 100])

391 %% Create an input for duration:

392 durationhbox = uiextras.HBox(...

393 ’Parent’, animationcontrolvbox, ...

68 visualization of beam with coupled bending and torsion vibrations

394 ’Spacing’, s);

395 uicontrol(...

396 ’Parent’, durationhbox, ...

397 ’Style’,’text’, ...

398 ’HorizontalAlignment’,’left’, ...

399 ’String’,’Animation duration [s]:’);

400 uicontrol(...

401 ’Parent’, durationhbox, ...

402 ’Style’,’edit’, ...

403 ’backgroundcol’, [1 1 1], ...

404 ’Callback’,@callbackinput, ...

405 ’Tag’,’duration’);

406 set(durationhbox, ’Sizes’, [150 100])

407 %% Create an input for time range:

408 timerangehbox = uiextras.HBox(...

409 ’Parent’, animationcontrolvbox, ...

410 ’Spacing’, s);

411 uicontrol(...

412 ’Parent’, timerangehbox, ...

413 ’Style’,’text’, ...

414 ’HorizontalAlignment’,’left’, ...

415 ’String’,’Time range, t = 0 to [s]:’);

416 uicontrol(...

417 ’Parent’, timerangehbox, ...

418 ’Style’,’edit’, ...

419 ’backgroundcol’, [1 1 1], ...

420 ’Callback’,@callbackinput, ...

421 ’Tag’,’tmax’);

422 set(timerangehbox, ’Sizes’, [150 100])

423 set(animationcontrolvbox, ’Sizes’, [efh efh efh efh])

424

425 %---%

426 %% Input panel support tab

427 supporttab = uiextras.HBox(...

428 ’Parent’, inputpaneltabs, ...

429 ’Padding’, p, ...

430 ’Spacing’, 2*s);

431 bendingBCpanel = uiextras.Panel(...

432 ’Parent’, supporttab, ...

433 ’Padding’, p, ...

434 ’Title’, ’Bending Boundary Conditions’);

435 torsionBCpanel = uiextras.Panel(...

436 ’Parent’, supporttab, ...

437 ’Padding’, p, ...

438 ’Title’, ’Torsion Boundary Conditions’);

439 % Distribute into columns:

440 bendingpanelhbox = uiextras.HBox(...

441 ’Parent’, bendingBCpanel);

442 supportcolumn1 = uiextras.VBox(...

443 ’Parent’, bendingpanelhbox);

444 supportcolumn2 = uiextras.VBox(...

445 ’Parent’, bendingpanelhbox);

446 supportcolumn3 = uiextras.VBox(...

447 ’Parent’, torsionBCpanel, ...

448 ’Spacing’, s);

449 % Reverse buttons:

450 reversebuttons = uiextras.VBox(...

451 ’Parent’, supporttab);

452 set(supporttab, ’Sizes’, [300 150 -1])

453

454 uicontrol(...

455 ’Parent’, reversebuttons, ...

456 ’Style’, ’checkbox’, ...

457 ’Tag’, ’reversebending’, ...

458 ’String’, ’Reverse Bending Boundary Conditions’);

459 uicontrol(...

460 ’Parent’, reversebuttons, ...

461 ’Style’, ’checkbox’, ...

code 69

462 ’Tag’, ’reversetorsion’, ...

463 ’String’, ’Reverse Torsion Boundary Conditions’);

464 set(reversebuttons, ’Sizes’, [68 15])

465

466 data.bendingBChandle(1) = uicontrol(...

467 ’Parent’, supportcolumn1, ...

468 ’Style’, ’radiobutton’, ...

469 ’Callback’, @radiobending, ...

470 ’String’, ’Hinged - Hinged’, ...

471 ’Value’, 1); % set the simple support to default

472 data.bendingBChandle(2) = uicontrol(...

473 ’Parent’, supportcolumn1, ...

474 ’Style’, ’radiobutton’, ...

475 ’Callback’, @radiobending, ...

476 ’String’, ’Clamped - Clamped’, ...

477 ’Value’, 0);

478 data.bendingBChandle(3) = uicontrol(...

479 ’Parent’, supportcolumn1, ...

480 ’Style’, ’radiobutton’, ...

481 ’Callback’, @radiobending, ...

482 ’String’, ’Clamped - Hinged’, ...

483 ’Value’, 0);

484 data.bendingBChandle(4) = uicontrol(...

485 ’Parent’, supportcolumn2, ...

486 ’Style’, ’radiobutton’, ...

487 ’Callback’, @radiobending, ...

488 ’String’, ’Clamped - Free’, ...

489 ’Value’, 0);

490 data.bendingBChandle(5) = uicontrol(...

491 ’Parent’, supportcolumn2, ...

492 ’Style’, ’radiobutton’, ...

493 ’Callback’, @radiobending, ...

494 ’String’, ’Free - Free’, ...

495 ’Value’, 0);

496 data.bendingBChandle(6) = uicontrol(...

497 ’Parent’, supportcolumn2, ...

498 ’Style’, ’radiobutton’, ...

499 ’Callback’, @radiobending, ...

500 ’String’, ’Clamped - Guided’, ...

501 ’Value’, 0);

502

503 data.torsionBChandle(1) = uicontrol(...

504 ’Parent’, supportcolumn3, ...

505 ’Style’, ’radiobutton’, ...

506 ’Callback’, @radiotorsion, ...

507 ’String’, ’Fixed - Fixed’, ...

508 ’Value’, 1);

509 data.torsionBChandle(2) = uicontrol(...

510 ’Parent’, supportcolumn3, ...

511 ’Style’, ’radiobutton’, ...

512 ’Callback’, @radiotorsion, ...

513 ’String’, ’Fixed - Free’, ...

514 ’Value’, 0);

515 data.torsionBChandle(3) = uicontrol(...

516 ’Parent’, supportcolumn3, ...

517 ’Style’, ’radiobutton’, ...

518 ’Callback’, @radiotorsion, ...

519 ’String’, ’Free - Free’, ...

520 ’Value’, 0);

521

522 %---%

523 %% Input panel geometric properties tab

524 geometrictab = uiextras.HBox(...

525 ’Parent’, inputpaneltabs, ...

526 ’Padding’,p, ...

527 ’Spacing’, 25);

528

529 % Distribute into columns:

70 visualization of beam with coupled bending and torsion vibrations

530 geometriccolumn1 = uiextras.VBox(...

531 ’Parent’, geometrictab, ...

532 ’Spacing’, s);

533 geometriccolumn2 = uiextras.VBox(...

534 ’Parent’, geometrictab, ...

535 ’Spacing’, s);

536

537 set(geometrictab, ’Sizes’, [300 300])

538 %% Distance between shear center and elastic center:

539 shearcenterhbox = uiextras.HBox(...

540 ’Parent’, geometriccolumn1, ...

541 ’Spacing’, s);

542 uicontrol(...

543 ’Parent’, shearcenterhbox, ...

544 ’Style’,’text’, ...

545 ’HorizontalAlignment’,’left’, ...

546 ’String’,’c (distance to shear center) [m]:’);

547 uicontrol(...

548 ’Parent’, shearcenterhbox, ...

549 ’Style’,’edit’, ...

550 ’backgroundcol’, [1 1 1], ...

551 ’Callback’,@callbackinput, ...

552 ’Tag’,’c’);

553 set(shearcenterhbox, ’Sizes’, [150 100])

554 set(geometriccolumn1, ’Sizes’, [efh])

555 %% Create an input for beam length:

556 beamlengthhbox = uiextras.HBox(...

557 ’Parent’, geometriccolumn2, ...

558 ’Spacing’, s);

559 uicontrol(...

560 ’Parent’, beamlengthhbox, ...

561 ’Style’,’text’, ...

562 ’HorizontalAlignment’,’left’, ...

563 ’String’,’Beam Length [m]:’);

564 uicontrol(...

565 ’Parent’, beamlengthhbox, ...

566 ’Style’,’edit’, ...

567 ’backgroundcol’, [1 1 1], ...

568 ’Callback’,@callbackinput, ...

569 ’Tag’,’beamlength’);

570 set(beamlengthhbox, ’Sizes’, [150 100])

571 %% Create an input for cross section area:

572 areahbox = uiextras.HBox(...

573 ’Parent’, geometriccolumn2, ...

574 ’Spacing’, s);

575 uicontrol(...

576 ’Parent’, areahbox, ...

577 ’Style’,’text’, ...

578 ’HorizontalAlignment’,’left’, ...

579 ’String’,’Cross Section Area [m^2]:’);

580 uicontrol(...

581 ’Parent’, areahbox, ...

582 ’Style’,’edit’, ...

583 ’backgroundcol’, [1 1 1], ...

584 ’Callback’,@callbackinput, ...

585 ’Tag’,’area’);

586 set(areahbox, ’Sizes’, [150 100])

587 %% Create an input for Iy:

588 Iyhbox = uiextras.HBox(...

589 ’Parent’, geometriccolumn2, ...

590 ’Spacing’, s);

591 uicontrol(...

592 ’Parent’, Iyhbox, ...

593 ’Style’,’text’, ...

594 ’HorizontalAlignment’,’left’, ...

595 ’String’,’Second moment of area Iy [m^4]:’);

596 uicontrol(...

597 ’Parent’, Iyhbox, ...

code 71

598 ’Style’,’edit’, ...

599 ’backgroundcol’, [1 1 1], ...

600 ’Callback’,@callbackinput, ...

601 ’Tag’,’Iy’);

602 set(Iyhbox, ’Sizes’, [150 100])

603 %% Create an input for Iz:

604 Izhbox = uiextras.HBox(...

605 ’Parent’, geometriccolumn2, ...

606 ’Spacing’, s);

607 uicontrol(...

608 ’Parent’, Izhbox, ...

609 ’Style’,’text’, ...

610 ’HorizontalAlignment’,’left’, ...

611 ’String’,’Second moment of area Iz [m^4]:’);

612 uicontrol(...

613 ’Parent’, Izhbox, ...

614 ’Style’,’edit’, ...

615 ’backgroundcol’, [1 1 1], ...

616 ’Callback’,@callbackinput, ...

617 ’Tag’,’Iz’);

618 set(Izhbox, ’Sizes’, [150 100])

619 set(geometriccolumn2, ’Sizes’, [efh efh efh efh])

620

621 %---%

622 %% Input panel material properties tab

623 materialtab = uiextras.HBox(...

624 ’Parent’, inputpaneltabs, ...

625 ’Padding’,p);

626 % Create a vertical box to hold input fields

627 materialtabvbox = uiextras.VBox(...

628 ’Parent’, materialtab, ...

629 ’Spacing’,s);

630 set(materialtab, ’Sizes’, [300])

631 %% Density:

632 densityhbox = uiextras.HBox(...

633 ’Parent’, materialtabvbox, ...

634 ’Spacing’, s);

635 uicontrol(...

636 ’Parent’, densityhbox, ...

637 ’Style’,’text’, ...

638 ’HorizontalAlignment’,’left’, ...

639 ’String’,’Density [kg/m^3]:’);

640 uicontrol(...

641 ’Parent’, densityhbox, ...

642 ’Style’,’edit’, ...

643 ’backgroundcol’, [1 1 1], ...

644 ’Callback’,@callbackinput, ...

645 ’Tag’,’density’);

646 set(densityhbox, ’Sizes’, [150 100])

647 %% Elasticity module:

648 Emodulehbox = uiextras.HBox(...

649 ’Parent’, materialtabvbox, ...

650 ’Spacing’, s);

651 uicontrol(...

652 ’Parent’, Emodulehbox, ...

653 ’Style’,’text’, ...

654 ’HorizontalAlignment’,’left’, ...

655 ’String’,’Elasticity Modulus [GPa]:’);

656 uicontrol(...

657 ’Parent’, Emodulehbox, ...

658 ’Style’,’edit’, ...

659 ’backgroundcol’, [1 1 1], ...

660 ’Callback’,@callbackinput, ...

661 ’Tag’,’elasticitymodule’);

662 set(Emodulehbox, ’Sizes’, [150 100])

663 %% Shear modulus:

664 Shearmodulushbox = uiextras.HBox(...

665 ’Parent’, materialtabvbox, ...

72 visualization of beam with coupled bending and torsion vibrations

666 ’Spacing’, s);

667 uicontrol(...

668 ’Parent’, Shearmodulushbox, ...

669 ’Style’,’text’, ...

670 ’HorizontalAlignment’,’left’, ...

671 ’String’,’Shear Modulus [GPa]:’);

672 uicontrol(...

673 ’Parent’, Shearmodulushbox, ...

674 ’Style’,’edit’, ...

675 ’backgroundcol’, [1 1 1], ...

676 ’Callback’,@callbackinput, ...

677 ’Tag’,’shearmodulus’);

678 set(Shearmodulushbox, ’Sizes’, [150 100])

679 %% Torsion stiffness:

680 torsionstiffnesshbox = uiextras.HBox(...

681 ’Parent’, materialtabvbox, ...

682 ’Spacing’, s);

683 uicontrol(...

684 ’Parent’, torsionstiffnesshbox, ...

685 ’Style’,’text’, ...

686 ’HorizontalAlignment’,’left’, ...

687 ’String’,’Torsion stiffness [m^4]:’);

688 uicontrol(...

689 ’Parent’, torsionstiffnesshbox, ...

690 ’Style’,’edit’, ...

691 ’backgroundcol’, [1 1 1], ...

692 ’Callback’,@callbackinput, ...

693 ’Tag’,’torsionstiffness’);

694 set(torsionstiffnesshbox, ’Sizes’, [150 100])

695

696 set(materialtabvbox, ’Sizes’, [efh efh efh efh])

697

698 %---%

699 %% Tab names for input panel

700 inputpaneltabs.TabNames = {’Main’, ’Animation controls’, ’Supports’, ’Geometric Properties’, ’Material Properties’

};

701 inputpaneltabs.SelectedChild = 1; % Open the program with the first tab active

702

703 %---%

704 %% About tab:

705 uicontrol(...

706 ’Style’, ’text’, ...

707 ’String’, sprintf(’Author: Asger Juul Brunshøj, student of Architectural Engineering at DTU.\nAdvisor: Jan

Becker Høgsberg.\n\nThis software was written as part of a bachelor’’s project at DTU, the Technical

University of Denmark, for the Department of Civil Engineering.\n\nThe report handed in together with

this software serves as documentation.\n\nJune 2014’), ...

708 ’Parent’, tabs);

709 tabs.TabNames = {’Main’, ’About’};

710 tabs.SelectedChild = 1; % Open the program with the first tab active

711

712 %---%

713 %% Save handles for the radiobuttons

714 % This stores handles to the radiobuttons into guidata. As the radiobuttons

715 % are handled with custom callback functions, they can’t be accessed

716 % automatically through ’guihandles’ like all the input fields can.

717 % Therefore, they are stored in guidata from where they will be accessed by

718 % the functions that need them.

719 guidata(window,data)

720

721 %---%

722 %% Set default values for input fields

723 % This calls defaults.m which sets values for the input fields.

724 % window is the handle of the GUI window.%

725 defaults(window)

726

727 %---%

728 end % ends the main function

729 %---%

code 73

730

731

732

733

734 %---%

735 %% Callback functions for radiobuttons:

736 % Below are functions that make the radio buttons function as radio buttons

737 % by only allowing one to be active at a time, so that when one is clicked,

738 % the others are set to off.

739 function radiosolver(hObject, EventData)

740 handles = guihandles(hObject);

741 data = guidata(hObject);

742 otherRadio = data.solverhandle(data.solverhandle ~= hObject);

743 set(otherRadio, ’Value’, 0);

744 set(hObject, ’Value’, 1);

745 if get(data.solverhandle(1),’Value’) == 1 % enable the input field when radiobutton is switched

746 set(handles.modeshape,’Enable’,’On’);

747 set(handles.initialw,’Enable’,’Off’);

748 set(handles.initialphi,’Enable’,’Off’);

749 set(handles.initialwdot,’Enable’,’Off’);

750 set(handles.initialphidot,’Enable’,’Off’);

751 set(handles.load,’Enable’,’Off’);

752 elseif get(data.solverhandle(2),’Value’) == 1

753 set(handles.modeshape,’Enable’,’Off’);

754 set(handles.initialw,’Enable’,’On’);

755 set(handles.initialphi,’Enable’,’On’);

756 set(handles.initialwdot,’Enable’,’On’);

757 set(handles.initialphidot,’Enable’,’On’);

758 set(handles.load,’Enable’,’Off’);

759 else

760 set(handles.modeshape,’Enable’,’Off’);

761 set(handles.initialw,’Enable’,’Off’);

762 set(handles.initialphi,’Enable’,’Off’);

763 set(handles.initialwdot,’Enable’,’Off’);

764 set(handles.initialphidot,’Enable’,’Off’);

765 set(handles.load,’Enable’,’On’);

766 end

767 % Have to call callbackinput here explicitly because the radiobuttons are

768 % set up with these custom callback functions. See description under

769 % callbackinput function to see what this does:

770 callbackinput(hObject,EventData);

771 end

772

773 function radiobending(hObject, EventData)

774 data = guidata(hObject);

775 otherRadio = data.bendingBChandle(data.bendingBChandle ~= hObject);

776 set(otherRadio, ’Value’, 0);

777 set(hObject, ’Value’, 1);

778 callbackinput(hObject,EventData);

779 end

780 function radiotorsion(hObject, EventData)

781 data = guidata(hObject);

782 otherRadio = data.torsionBChandle(data.torsionBChandle ~= hObject);

783 set(otherRadio, ’Value’, 0);

784 set(hObject, ’Value’, 1);

785 callbackinput(hObject,EventData);

786 end

787

788 %---%

789 %% ’Compute’ pushbutton callback function:

790 % The compute button does mainly three things. It calls

791 % collectinput.m to collect input from input fields. It calls solver.m

792 % which computes the solution from the user input, and lastly it calls

793 % plotting.m which pre-renders the plots, making them ready for playback by

794 % the ’Playback’ pushbutton.

795 function compute(hObject,EventData)

796 handles = guihandles(hObject);

797 set(handles.playbackbutton, ’Enable’, ’Off’) % disable buttons while preparing new animation

74 visualization of beam with coupled bending and torsion vibrations

798 % set(handles.computebutton, ’Enable’, ’Off’) % not a good idea, since if the user messes up the input and the

program stops, the user will have to restart the whole GUI and lose his input. If the compute button stays

accessible, the user can fix the input and continue to use the program without error.

799 pause(0.001) % for some reason the above needs a small delay for the GUI to visually update properly

800 collectinput(hObject); % collect and store input from the GUI

801 solver(hObject); % compute solution

802 plotting(hObject); % pre-render frames

803 set(handles.playbackbutton, ’Enable’, ’On’)

804 % set(handles.computebutton, ’Enable’, ’On’)

805 end

806

807 %---%

808 %% ’Playback’ pushbutton callback function:

809 % This calls playback.m, which animates the plot figures.

810 function playbackanimation(hObject,EventData) % Callback for the playback button

811 handles = guihandles(hObject);

812 set(handles.playbackbutton, ’Enable’, ’Off’) % disable buttons during playback

813 set(handles.computebutton, ’Enable’, ’Off’) % disable buttons during playback

814 pause(0.001) % for some reason the above needs a small delay for the GUI to visually update properly

815 playback(hObject); % start the playback

816 set(handles.playbackbutton, ’Enable’, ’On’) % reenable buttons

817 set(handles.computebutton, ’Enable’, ’On’)

818 end

819

820 %---%

821 %% Callback function that gets called everytime an input field changes value:

822 % This callback function is used to inform the user that input has changed

823 % since the last computation. It does two things: It changes the message

824 % and it changes the value of a flag ’data.inputchanged’, which lets other

825 % functions like playback.m determine what message to display when it is

826 % done showing the animation

827 function callbackinput(hObject,EventData)

828 notify(hObject,sprintf(’\nPress Compute button to use new input.’),’temporary’);

829 data = guidata(hObject);

830 data.inputchanged = 1; % flag that input has changed. This is used by playback.m, to determine what the console

should say after playback.

831 guidata(hObject, data); % update guidata

832 end

code 75

B.3 defaults.m

1 function defaults(hObject)

2 % This sets the default values when the GUI is launched.

3

4 % Get handles to the gui input fields:

5 handles = guihandles(hObject);

6

7 set(handles.N, ’String’,’8’);

8 set(handles.beamlength, ’String’,’40’);

9 set(handles.density, ’String’,’7000’);

10 set(handles.area, ’String’,’0.38’);

11 set(handles.c, ’String’,’0.5883’);

12 set(handles.elasticitymodule, ’String’,’200’);

13 set(handles.Iy, ’String’,’0.0360’);

14 set(handles.Iz, ’String’,’0.2293’);

15 set(handles.shearmodulus, ’String’,’70’);

16 set(handles.torsionstiffness, ’String’,’0.0005’);

17 set(handles.fps,’String’,’20’);

18 set(handles.duration,’String’,’6’);

19 set(handles.tmax,’String’,’2’);

20 set(handles.xGyration, ’String’,’0.5’);

21 set(handles.modeshape,’String’,’1’);

22 set(handles.load,’String’,’sin(2*pi*t)’);

23 set(handles.initialw,’String’,’0.05*sin(pi*x/L)’);

24 set(handles.initialphi,’String’,’0’);

25 set(handles.initialwdot,’String’,’0’);

26 set(handles.initialphidot,’String’,’0’);

27 notify(hObject,’Click the Compute button to prepare an animation using values from the input fields.’,’temporary’)

;

28 end

76 visualization of beam with coupled bending and torsion vibrations

B.4 collectinput.m

1 function collectinput(hObject)

2 % this collects all the input variables and stores them for use by

3 % solver.m, plotting.m and playback.m

4

5 % Get handles to the gui input fields

6 handles = guihandles(hObject);

7 % Get GUI data

8 data = guidata(hObject);

9

10 %---%

11 % collect input values from the gui handles, and store them in data

12 data.N = eval(get(handles.N, ’String’));

13 data.L = eval(get(handles.beamlength, ’String’));

14 data.rho = eval(get(handles.density, ’String’));

15 data.area = eval(get(handles.area, ’String’));

16 data.c = eval(get(handles.c, ’String’));

17 data.E = eval(get(handles.elasticitymodule, ’String’))*10^9; % input as GPa, convert to SI units

18 data.Iy = eval(get(handles.Iy, ’String’));

19 data.Iz = eval(get(handles.Iz, ’String’));

20 data.G = eval(get(handles.shearmodulus, ’String’))*10^9; % input as GPa, convert to SI units

21 data.K = eval(get(handles.torsionstiffness, ’String’));

22 data.fps = eval(get(handles.fps,’String’));

23 data.duration = eval(get(handles.duration,’String’));

24 data.tmax = eval(get(handles.tmax,’String’));

25 data.xGyration = eval(get(handles.xGyration, ’String’));

26 data.modeshape = eval(get(handles.modeshape,’String’));

27

28 %-------------------%

29 % allows L to be used by the user in the input fields of initial conditions

30 % and external load by using the variable "L".

31 L = data.L;

32

33 %-------------------%

34 % The load function

35 string = get(handles.load,’String’);

36 prefix = ’@(x,t)’;

37 InKiloNewtons = eval(strcat(prefix,string));

38 data.p = @(x,t) 1000*InKiloNewtons(x,t); % convert to newtons

39

40 %-------------------%

41 % Initial conditions

42 string = get(handles.initialw,’String’);

43 prefix = ’@(x)’;

44 data.initialw = eval(strcat(prefix,string));

45

46 string = get(handles.initialphi,’String’);

47 prefix = ’@(x)’;

48 data.initialphi = eval(strcat(prefix,string));

49

50 string = get(handles.initialwdot,’String’);

51 prefix = ’@(x)’;

52 data.initialwdot = eval(strcat(prefix,string));

53

54 string = get(handles.initialphidot,’String’);

55 prefix = ’@(x)’;

56 data.initialphidot = eval(strcat(prefix,string));

57

58 %-------------------%

59 % The buttons that are active one at a time controlling the support conditions etc.

60 % (called radio buttons), have to be accessed through guidata instead of guihandles

61 % because of how they are set up.

62 % The following will create vectors like [0 1 0] which will be used in solver.m

63 % to select the correct basis functions for the chosen support conditions

64 data.bendingBC = [get(data.bendingBChandle(1),’Value’);

65 get(data.bendingBChandle(2),’Value’);

code 77

66 get(data.bendingBChandle(3),’Value’);

67 get(data.bendingBChandle(4),’Value’);

68 get(data.bendingBChandle(5),’Value’);

69 get(data.bendingBChandle(6),’Value’)];

70 data.torsionBC = [get(data.torsionBChandle(1),’Value’);

71 get(data.torsionBChandle(2),’Value’);

72 get(data.torsionBChandle(3),’Value’)];

73

74 %-------------------%

75 % This is the radio buttons that determines whether to display a single modeshape,

76 % a harmonic oscillation from initial conditions, or a numerical simulation of a load

77 data.solver = [get(data.solverhandle(1),’Value’);

78 get(data.solverhandle(2),’Value’);

79 get(data.solverhandle(3),’Value’)];

80

81

82 %---%

83 % The following values are not direct input values, but are derived from the above

84 data.Ip = data.Iy + data.Iz; % polar moment of area.

85 data.nframes = max([round(data.duration * data.fps) 2]); % compute the number of frames in the animations. max()

with the 2 ensures that there is at least 2 frames. This means a little less care can be taking in solver.m

in certain places because 1 frame would lead to vectors instead of arrays. Another effect of this is that if

the user messes up the inputs for animation duration and fps in relation to each other badly enough so

nframes would be calculated as 0 (like a user who is interested only in the coupling image, not the animation

and want it to compute as fast as possible), then the whole program crashes quite badly, and the whole thing

has to be restarted leading to reentering input. This just safeguards against that.

86 data.tpoints = linspace(0,data.tmax,data.nframes); % compute time values for each frame

87

88 % Updata guidata with the new input

89 guidata(hObject,data);

90 end

78 visualization of beam with coupled bending and torsion vibrations

B.5 solver.m

1 function solver(hObject)

2 % This function computes the vibration based on input collected from the GUI

3 % input fields.

4

5 %---%

6 % Get guihandles and guidata collected from input fields:

7 handles = guihandles(hObject);

8 data = guidata(hObject);

9 % For convenience of notation since these are used repeatedly:

10 N = data.N;

11 L = data.L;

12 tpoints = data.tpoints;

13 c = data.c;

14 rho = data.rho;

15 Ip = data.Ip;

16 area = data.area;

17

18 %---%

19 % The samples over the x axes with values from 0 to L:

20 xpoints = 0:0.002*L:L; % provides about 500 points, which is about 1 point per horizontal pixel in the animation

at default window size.

21

22 %---%

23 %% Bending Basis Functions

24 if data.bendingBC(1) == 1

25 [W, alpha] = hinged_hinged_BENDING(N,xpoints,L);

26 elseif data.bendingBC(2) == 1

27 [W, alpha] = clamped_clamped_BENDING(N,xpoints,L);

28 elseif data.bendingBC(3) == 1

29 [W, alpha] = clamped_hinged_BENDING(N,xpoints,L);

30 elseif data.bendingBC(4) == 1

31 [W, alpha] = clamped_free_BENDING(N,xpoints,L);

32 elseif data.bendingBC(5) == 1

33 [W, alpha] = free_free_BENDING(N,xpoints,L);

34 else

35 [W, alpha] = clamped_guided_BENDING(N,xpoints,L);

36 end

37

38 % Reverse

39 if get(handles.reversebending, ’Value’) == 1

40 W = fliplr(W);

41 end

42

43 %% Torsion Basis Functions

44 if data.torsionBC(1) == 1

45 [Phi, beta] = fixed_fixed_TORSION(N,xpoints,L);

46 elseif data.torsionBC(2) == 1

47 [Phi, beta] = fixed_free_TORSION(N,xpoints,L);

48 else

49 [Phi, beta] = free_free_TORSION(N,xpoints,L);

50 end

51

52 % Reverse

53 if get(handles.reversetorsion, ’Value’) == 1

54 Phi = fliplr(Phi);

55 end

56

57 %---%

58 %% Coupling integrals

59 Psi = zeros(N,N); % initialize

60 % A row in Psi corresponds to the index on W, while a column

61 % corresponds to the index on Phi.

62 for i=1:N

63 for j=1:N

64 Psi(i,j) = c*rho*area*trapz(xpoints,W(i,:).*Phi(j,:));

code 79

65 end

66 end

67

68 %---%

69 %% Mass Matrix

70 M = [rho*area*diag(ones(N,1)) -Psi;

71 -Psi’ (c^2*rho*area+rho*Ip)*diag(ones(N,1))];

72

73 %---%

74 %% Stiffness Matrix

75 K = [data.E*data.Iz*diag(alpha).^4*diag(ones(N,1)) zeros(N);

76 zeros(N) data.G*data.K*diag(beta).^2*diag(ones(N,1))];

77

78 %---%

79 %% Solve the eigenproblem

80 [natfreq,eigenvectors] = EigenProblemSolver(M,K,hObject);

81 printnatfreq(hObject,N,natfreq) % show the natural frequencies to the user

82 data.eigenvectors = eigenvectors; % makes it available to plotting.m

83

84 %---%

85 %% Choose a solver subfunction, and compute all the values for w and phi:

86 if data.solver(1) == 1 % ’Individual Mode Shape’ chosen

87 message = sprintf(’\nSolving for the %d. Mode Shape...’,data.modeshape);

88 notify(hObject,message,’append’);

89 [w,phi] = singlemodeshape(N,natfreq,eigenvectors,W,Phi,tpoints,handles,data,hObject);

90 elseif data.solver(2) == 1 % ’Harmonic Oscillation With Initial Conditions’ chosen

91 notify(hObject,sprintf(’\nSolving with initial conditions...’),’append’);

92 [w,phi] = naturalresponse(N,natfreq,eigenvectors,W,Phi,xpoints,tpoints,handles,data,hObject);

93 else % ’Specified Load’ chosen

94 notify(hObject,sprintf(’\nSolving with numerical solver...’),’append’);

95 [w,phi] = forcedresponse(L,N,M,K,W,Phi,xpoints,tpoints,data);

96 end

97

98 %---%

99 %% Warn the user if the absolute torsion is above 0.1 radians,

100 % A torsion above 0.1 radians will break with the assumption of linearity.

101 if max(abs(phi(:))) > 0.101

102 notify(hObject,sprintf(’\nWARNING: Torsion is over 0.1 radians, which violates the assumption of linearity!’),

’append’);

103 end

104

105 %---%

106 %% Update guidata to make the results from this file (saved into "data") available from other subfiles like

playback.m

107 data.xpoints = xpoints;

108 data.w = w;

109 data.phi = phi;

110 guidata(hObject, data); % updates guidata. hObject is just a handle to the instance of the program that is calling

this file.

111

112 %---%

113 %% THIS ENDS THE MAIN FUNCTION

114 end

115

116

117 %---%

118 %% Functions for bending:

119 % The following defines nested functions for different boundary conditions.

120 % Only one of these is called.

121 % basisfunction is an array. It is the basis functions for bending.

122 % The rows corresponds to values of n, while the

123 % columns corresponds to values of x.

124 % In the following, ndgrid is used to create arrays out of vectors,

125 % which allows basisfunction (which is really a function of two variables,

126 % W_n(x) or Phi_n(x), to be constructed as an array.

127 function [basisfunction, spatialfreq] = hinged_hinged_BENDING(N,xpoints,L)

128 roots = (1:N)*pi;

129 [rG, xG] = ndgrid(roots,xpoints); % This order will mean that points are accessed as W(n,x) or Phi(n,x)

80 visualization of beam with coupled bending and torsion vibrations

130 basisfunctionRaw = sin(rG.*xG/L);

131 NormalizationFactor = sqrt(2/L);

132 basisfunction = basisfunctionRaw*NormalizationFactor;

133 spatialfreq = roots/L;

134 end

135

136 function [basisfunction, spatialfreq] = clamped_clamped_BENDING(N,xpoints,L)

137 precomputed = [4.7300 7.8532 10.9956 14.1372];

138 if N<5

139 roots = precomputed(1:N);

140 else

141 roots = [precomputed (2*(5:N)+1)*pi/2];

142 end

143 [rG, xG] = ndgrid(roots,xpoints);

144 basisfunctionRaw = cosh(rG.*xG/L)-cos(rG.*xG/L)-(cosh(rG)-cos(rG))./(sinh(rG)-sin(rG)).*(sinh(rG.*xG/L)-sin(rG.*xG

/L));

145 NormalizationFactor = 1./sqrt(trapz(xpoints,(basisfunctionRaw.^2)’)); % this is a vector of constants D_n. These

are computed here so that the integral of W^2 from 0 to L is 1.

146 basisfunction = diag(NormalizationFactor)*basisfunctionRaw; % the normalization factor has to be multiplied onto

the rows of basisfunctionRaw.

147 spatialfreq = roots/L;

148 end

149

150 function [basisfunction, spatialfreq] = clamped_hinged_BENDING(N,xpoints,L)

151 precomputed = [3.9266 7.0686 10.2102 13.3518];

152 if N<5

153 roots = precomputed(1:N);

154 else

155 roots = [precomputed (4*(5:N)+1)*pi/4];

156 end

157 [rG, xG] = ndgrid(roots,xpoints);

158 basisfunctionRaw = cosh(rG.*xG/L)-cos(rG.*xG/L)-(cosh(rG)-cos(rG))./(sinh(rG)-sin(rG)).*(sinh(rG.*xG/L)-sin(rG.*xG

/L));

159 NormalizationFactor = 1./sqrt(trapz(xpoints,(basisfunctionRaw.^2)’));

160 basisfunction = diag(NormalizationFactor)*basisfunctionRaw;

161 spatialfreq = roots/L;

162 end

163

164 function [basisfunction, spatialfreq] = clamped_free_BENDING(N,xpoints,L)

165 precomputed = [1.8751 4.6941 7.8548 10.9955];

166 if N<5

167 roots = precomputed(1:N);

168 else

169 roots = [precomputed (2*(5:N)-1)*pi/2];

170 end

171 [rG, xG] = ndgrid(roots,xpoints);

172 basisfunctionRaw = cosh(rG.*xG/L)-cos(rG.*xG/L)-(cosh(rG)+cos(rG))./(sinh(rG)+sin(rG)).*(sinh(rG.*xG/L)-sin(rG.*xG

/L));

173 NormalizationFactor = 1./sqrt(trapz(xpoints,(basisfunctionRaw.^2)’));

174 basisfunction = diag(NormalizationFactor)*basisfunctionRaw;

175 spatialfreq = roots/L;

176 end

177

178 function [basisfunction, spatialfreq] = free_free_BENDING(N,xpoints,L)

179 precomputed = [4.7300 7.8532 10.9956 14.1372];

180 if N<5

181 roots = precomputed(1:N);

182 else

183 roots = [precomputed (2*(5:N)+1)*pi/2];

184 end

185 [rG, xG] = ndgrid(roots,xpoints);

186 basisfunctionRaw = cosh(rG.*xG/L)+cos(rG.*xG/L)-(cosh(rG)-cos(rG))./(sinh(rG)-sin(rG)).*(sinh(rG.*xG/L)+sin(rG.*xG

/L));

187 NormalizationFactor = 1./sqrt(trapz(xpoints,(basisfunctionRaw.^2)’));

188 basisfunction = diag(NormalizationFactor)*basisfunctionRaw;

189 spatialfreq = roots/L;

190 end

191

code 81

192 function [basisfunction, spatialfreq] = clamped_guided_BENDING(N,xpoints,L)

193 precomputed = [2.3650 5.4978 8.6394 11.7810];

194 if N<5

195 roots = precomputed(1:N);

196 else

197 roots = [precomputed (4*(5:N)-1)*pi/4];

198 end

199 [rG, xG] = ndgrid(roots,xpoints);

200 basisfunctionRaw = cosh(rG.*xG/L)-cos(rG.*xG/L)-(sinh(rG)+sin(rG))./(cosh(rG)-cos(rG)).*(sinh(rG.*xG/L)-sin(rG.*xG

/L));

201 NormalizationFactor = 1./sqrt(trapz(xpoints,(basisfunctionRaw.^2)’));

202 basisfunction = diag(NormalizationFactor)*basisfunctionRaw;

203 spatialfreq = roots/L;

204 end

205

206 %---%

207 %% Functions for torsion:

208 function [basisfunction, spatialfreq] = fixed_fixed_TORSION(N,xpoints,L)

209 % This has the same solution as hinged_hinged bending:

210 [basisfunction, spatialfreq] = hinged_hinged_BENDING(N,xpoints,L);

211 end

212

213 function [basisfunction, spatialfreq] = fixed_free_TORSION(N,xpoints,L)

214 roots = (2*(1:N)-1)*pi/2;

215 [rG, xG] = ndgrid(roots,xpoints);

216 basisfunctionRaw = sin(rG.*xG/L);

217 NormalizationFactor = 1./sqrt(trapz(xpoints,(basisfunctionRaw.^2)’));

218 basisfunction = diag(NormalizationFactor)*basisfunctionRaw;

219 spatialfreq = roots/L;

220 end

221

222 function [basisfunction, spatialfreq] = free_free_TORSION(N,xpoints,L)

223 roots = (1:N)*pi;

224 [rG, xG] = ndgrid(roots,xpoints);

225 basisfunctionRaw = cos(rG.*xG/L);

226 NormalizationFactor = 1./sqrt(trapz(xpoints,(basisfunctionRaw.^2)’));

227 basisfunction = diag(NormalizationFactor)*basisfunctionRaw;

228 spatialfreq = roots/L;

229 end

230

231 %---%

232 % The following defines four functions.

233 % Three for the different problems

234 % of showing a single modeshape, starting the system with specified initial

235 % conditions, and applying a load to the system.

236 % And a fourth EigenProblemSolver, which is called before the others.

237 function [natfreq,eigenvectors] = EigenProblemSolver(M,K,hObject)

238 [eigenvectors,eigenvalues] = eig(K,M);

239

240 % create vector with naturalfrequencies:

241 natfreq = diag(sqrt(real(eigenvalues))); % the contents of ’eigenvalues’ are real, but are sometimes represented

as e.g.: 1.0000 + 0.0000i, so real() is just removing the 0.0000i

242

243 %------------------------%

244 % This warns the user if a bug is detected, see "known bugs" in the report:

245 if min(min(eigenvalues)) < 0 % negative eigenvalues seem to follow when eig() produces weird output

246 notify(hObject,sprintf(’\n\nWARNING: eig() HAS PRODUCED WEIRD OUTPUT. SEE "KNOWN BUGS" IN REPORT. Likely this

happened because the eigenvalues computed by eig() are extremely small or extremely big. One reason why

this may have happened is that N is set to a large number, so that many natural frequncies are computed,

where the last of them become too big to handle. You may try again with different input.\n’),’reset’);

247 error(’WARNING: eig() HAS PRODUCED WEIRD OUTPUT. SEE "KNOWN BUGS" IN REPORT. Likely this happened because the

eigenvalues computed by eig() are extremely small or extremely big.’)

248 end

249 end

250

251 %---%

252 function [w,phi] = singlemodeshape(N,natfreq,eigenvectors,W,Phi,tpoints,handles,data,hObject)

253 % The report handed in together with this software has a deeper explanation

82 visualization of beam with coupled bending and torsion vibrations

254 % of how this works, so please use that.

255

256 %---------------------%

257 % The sum turned into a vector with the value of the sum at any point x (the sum is a function of only x):

258 sumcontent = zeros(size(W)); % initialize

259 for i = 1:N

260 sumcontent(i,:) = W(i,:) * eigenvectors(i,data.modeshape);

261 end

262

263 if ~isrow(sumcontent) % sumcontent is an array

264 sumterm = sum(sumcontent);

265 else % sumcontent is a row vector, this happens in the special case that N is set to 1, and in this case we

definitely don’t want to use sum() on it, because it would sum by the row, not by the column as it does when

given an array.

266 sumterm = sumcontent;

267 end

268

269 [sumtermGRID,tpointsGRID] = ndgrid(sumterm,tpoints);

270 w = cos(natfreq(data.modeshape)*tpointsGRID) .* sumtermGRID;

271

272 %---------------------%

273 sumcontent = zeros(size(Phi)); % initialize

274 for i = 1:N

275 sumcontent(i,:) = Phi(i,:) * eigenvectors(N+i,data.modeshape);

276 end

277

278 if ~isrow(sumcontent) % sumcontent is an array

279 sumterm = sum(sumcontent);

280 else % sumcontent is a row vector, this happens when N is set to 1, and in this case we definitely don’t want to

use sum() on it, because it would sum by the row, not by the column as it does when given an array.

281 sumterm = sumcontent;

282 end

283

284 [sumtermGRID,tpointsGRID] = ndgrid(sumterm,tpoints);

285 phi = cos(natfreq(data.modeshape)*tpointsGRID) .* sumtermGRID;

286

287 %---------------------%

288 % scale with regards to rotation

289 maxTorsionAmplitude = max(abs(phi(:,1))); % t = 0

290 maxBendingAmplitude = max(abs(w(:,1))); % t = 0

291 if maxBendingAmplitude / maxTorsionAmplitude < 50 % if true, scale by rotation. This is a cap for the amount of

bending we will see. This is relevant fx if the distance between the shear center and center of mass is given

a small value.

292 phi = phi / maxTorsionAmplitude * 0.1;

293 w = w / maxTorsionAmplitude * 0.1;

294 else % Rotation is too small to scale by rotation, and we will just scale by displacement instead.

295 phi = phi / maxBendingAmplitude * 5; % the last factor here maximizes the amplitudes, while securing that

rotation stays below 0.1 (because the ratio above is 50)

296 w = w / maxBendingAmplitude * 5;

297 end

298 end

299

300 %---%

301 function [w,phi] = naturalresponse(N,natfreq,eigenvectors,W,Phi,xpoints,tpoints,handles,data,hObject)

302 % The report handed in together with this software has a deeper explanation

303 % of how this works, so please use that.

304

305 % First arrays Ww, Wwdot, Phiphi and Phiphidot are computed, which,

306 % taking Ww as an example, are W_k(x)*w(x,0). These are the contents of the

307 % integrals on the right hand side of the matrix equation defining the

308 % constants A_k and B_k.

309 initialw = data.initialw(xpoints); % compute points from function

310 Ww = zeros(size(W)); % initialize

311 for i = 1:N

312 Ww(i,:) = W(i,:) .* initialw;

313 end

314 initialwdot = data.initialwdot(xpoints); % compute points from function

315 Wwdot = zeros(size(W)); % initialize

code 83

316 for i = 1:N

317 Wwdot(i,:) = W(i,:) .* initialwdot;

318 end

319 initialphi = data.initialphi(xpoints); % compute points from function

320 Phiphi = zeros(size(Phi)); % initialize

321 for i = 1:N

322 Phiphi(i,:) = Phi(i,:) .* initialphi;

323 end

324 initialphidot = data.initialphidot(xpoints); % compute points from function

325 Phiphidot = zeros(size(Phi)); % initialize

326 for i = 1:N

327 Phiphidot(i,:) = Phi(i,:) .* initialphidot;

328 end

329 % B:

330 rhs = [trapz(xpoints,Ww’) trapz(xpoints,Phiphi’)]’;

331 B = eigenvectors\rhs;

332 % A:

333 rhs = [trapz(xpoints,Wwdot’) trapz(xpoints,Phiphidot’)]’;

334 A = (eigenvectors*diag(natfreq(:)))\rhs;

335

336 w = zeros(length(xpoints),length(tpoints)); % initialize

337 phi = zeros(length(xpoints),length(tpoints));

338 for n = 1:N

339 sumterm = 0;

340 for k = 1:2*N

341 sumterm = sumterm + (A(k)*sin(natfreq(k)*tpoints)+B(k)*cos(natfreq(k)*tpoints)) * eigenvectors(n,k);

342 end

343 [WGRID,sumtermGRID] = ndgrid(W(n,:),sumterm);

344 w = w + WGRID .* sumtermGRID;

345

346 sumterm = 0;

347 for k = 1:2*N

348 sumterm = sumterm + (A(k)*sin(natfreq(k)*tpoints)+B(k)*cos(natfreq(k)*tpoints)) * eigenvectors(N+n,k);

349 end

350 [PhiGRID,sumtermGRID] = ndgrid(Phi(n,:),sumterm);

351 phi = phi + PhiGRID .* sumtermGRID;

352 end

353

354 end

355

356 %---%

357 function [w,phi] = forcedresponse(L,N,M,K,W,Phi,xpoints,tpoints,data)

358 % The report handed in together with this software has a deeper explanation

359 % of how this works, so please use that.

360

361 H = [zeros(2*N) eye(2*N);

362 -M\K zeros(2*N)];

363 function odeRHS = RHS(t,q)

364 pvec = data.p(xpoints,t);

365 % note in the above line, that if the user did not type x in the formula

366 % for p (like a constant evenly distributed load of 100 N/m which would

367 % be input as just "100" with no x or t in it), then the above evaluates

368 % to a scalar, not a vector. This isn’t a problem in the following, but

369 % if the code is altered, pvec should be expanded into a vector when it

370 % evaluates to a scalar.

371

372 f = zeros(2*N,1); % initialize

373 for n = 1:N

374 f(n) = -trapz(xpoints,W(n,:).*pvec);

375 end

376 for n = 1:N

377 f(N+n) = trapz(xpoints,Phi(n,:).*pvec*data.c);

378 end

379 b = [zeros(2*N,1); M\f];

380 odeRHS = H*q+b;

381 end

382 initial = zeros(4*N,1); % % This means that the animation is started from rest. The first N rows represent time

functions for bending, r_1(0), r_2(0), ..., while the next N rows are s_1(0), s_2(0),... Then comes N initial

84 visualization of beam with coupled bending and torsion vibrations

derivatives for bending, r’(0), and lastly N initial derivatives for torsion s’(0).

383

384 [T,Q] = ode45(@RHS,tpoints,initial); % The first quarter of columns of this solution is for r(t), the next quarter

for s(t), and the last half is the first derivative (irrelevant)

385

386 % split into r(t) and s(t)

387 r = Q(:,1:N); % the rows are time, and the columns are r_1(t), r_2(t) and so on.

388 s = Q(:,N+1:2*N);

389

390 w = zeros(length(xpoints),length(tpoints));

391 phi = zeros(length(xpoints),length(tpoints));

392 for i = 1:N

393 [WGRID,rGRID] = ndgrid(W(i,:),r(:,i));

394 w = w + WGRID.*rGRID;

395

396 [PhiGRID,sGRID] = ndgrid(Phi(i,:),s(:,i));

397 phi = phi + PhiGRID.*sGRID;

398 end

399

400 end

401

402 function printnatfreq(hObject,N,natfreq)

403 % Shows the natural frequencies to the user

404 notify(hObject,sprintf(’N = %d.\n\nThe first natural frequencies are:\n[in cycles per second] ’,N),’reset’)

405 % convert from radians per second to cycles per second:

406 natfreq = natfreq/(2*pi);

407 % round to two decimals:

408 natfreq = roundn(natfreq,-2);

409 if N<8

410 notify(hObject,natfreq,’append’);

411 else

412 notify(hObject,natfreq(1:14),’append’);

413 end

414

415 end

code 85

B.6 plotting.m

1 function plotting (hObject)

2 % This function renders the animations and static graphics.

3

4 handles = guihandles(hObject);

5 data = guidata(hObject);

6 notify(hObject,sprintf(’\nPre-rendering animation...’),’temporary’);

7

8 %---%

9 %% Clear the axes:

10 cla(data.animationright)

11 cla(data.animationleft)

12 cla(data.staticaxesbending)

13 cla(data.staticaxestorsion)

14 cla(data.staticaxescoupling)

15

16 %---%

17 %% Static images:

18 % To ensure that the scale is the same in the two static images, first

19 % compute maximum values:

20 absmaxB = max(abs(data.w(:)));

21 absmaxT = max(abs(data.phi(:)));

22 absmaxBT = max([absmaxB absmaxT]);

23 % Update the axes:

24 imagesc(flipud(data.w’), ’Parent’,data.staticaxesbending,[-absmaxBT absmaxBT]);

25 set(data.staticaxesbending,’XTickLabel’,’’,’YTickLabel’,’’) % removes tick marks, since these would take a little

work to get right. At present, they would be 0 to length(xpoints) on the first axes, and 0 to length(tpoints)

on the second axes. You would want 0 to L on the first axes and 0 to tmax on the second.

26 imagesc(flipud(data.phi’), ’Parent’,data.staticaxestorsion,[-absmaxBT absmaxBT]);

27 set(data.staticaxestorsion,’XTickLabel’,’’,’YTickLabel’,’’)

28 % Update the image in the "Visualize Coupling" output tab:

29 imagesc(abs(data.eigenvectors), ’Parent’,data.staticaxescoupling);

30

31 %---%

32 %% The animations:

33

34 % ’xGyrIndex’ is the index of data.xpoints, corresponding to the x coordinate

35 % that the left animation will show gyration radius displacement and rotation

36 % for. So for example, if data.xpoints has 500 points and the user

37 % specifyes 0.25 for data.xGyration, xGyrIndex will be 0.25*500 = 125. It

38 % is rounded because it is an index:

39 xGyrIndex = round(length(data.xpoints)*data.xGyration);

40 % if the user specified either 0 or 1, trying to get the end points, the above

41 % may be unsuccessful because of rounding. In that case, the following

42 % straightens it out:

43 if xGyrIndex < 1

44 xGyrIndex = 1;

45 elseif xGyrIndex > length(data.xpoints)

46 xGyrIndex = length(data.xpoints);

47 end

48 % the gyration radii are computed from the Area, Iy and Iz

49 ry = sqrt(data.Iy/data.area);

50 rz = sqrt(data.Iz/data.area);

51

52 % Axes must have hold on or layerGyration(1) will become invalid after

53 % layerGyration(2) is created and so on. This is a technical point,

54 % needed because of how the animation is constructed in layers.

55 hold(data.animationleft,’on’);

56 hold(data.animationright,’on’);

57

58 %% The Left Plot (Gyration axes):

59

60 % The left animation must have equal axis spacing. Otherwise, the two lines

61 % would not even stay perpendicular:

62 axis(data.animationleft,’equal’);

63 % During the loop that generates the frames, the following four variables

86 visualization of beam with coupled bending and torsion vibrations

64 % keep track of how far from (0,0) the content of the animation get. This

65 % is used in scaling the animation frame. First they are reset to 0:

66 xmin = 0;

67 xmax = 0;

68 ymin = 0;

69 ymax = 0;

70

71 % The following loop prepares the perpendicular lines that make up the left

72 % plot, by rotating and translating them

73 for frame=1:data.nframes % loop over all frames

74 % Get the twist angle for this frame from the solution computed in solver.m:

75 angle = data.phi(xGyrIndex,frame);

76 rotationmatrix = [cos(angle) -sin(angle); ...

77 sin(angle) cos(angle)]; % counter-clockwise rotation matrix

78

79 % The horizontal line:

80 % (the format [x1 x2; y1 y2] is a line from (x1,y1) to (x2,y2),

81 % so the lines are in columns)

82 hline = [-ry ry;

83 0 0];

84 hlinerot = (rotationmatrix*hline); % the horizontal line, now rotated

85 % The vetical line:

86 vline = [0 0;

87 -rz rz];

88 vlinerot = (rotationmatrix*vline); % the vertical line, now rotated

89

90 % When using the above lines with MATLABs plot(), the format has to be

91 % a little different. The following changes the format to suit plot()

92 hlinerotx = hlinerot(1,:); % all the x coordinates to the horizontal line

93 hlineroty = hlinerot(2,:); % all the y coordinates to the horizontal line

94 vlinerotx = vlinerot(1,:);

95 vlineroty = vlinerot(2,:);

96

97 % The lines are now rotated. The following displaces the lines by

98 % correcting the y coordinates. The vertical displacement of the elastic center

99 % is w-c*sin(phi), and the horizontal displacement is c*cos(phi).

100 % Notice that here the trigonometric functions are used,

101 % to correctly display the displacement, whereas the computation assumes

102 % small angles leading to linearity, w-c*phi.

103 xDisplacement = data.c*(1-cos(data.phi(xGyrIndex,frame)));

104 yDisplacement = data.w(xGyrIndex,frame) - data.c*sin(data.phi(xGyrIndex,frame));

105 hlinerotx = hlinerotx + xDisplacement;

106 vlinerotx = vlinerotx + xDisplacement;

107 hlineroty = hlineroty + yDisplacement;

108 vlineroty = vlineroty + yDisplacement;

109

110 % and we’re ready to render the plots one line at a time

111 layerhline(frame) = plot(data.animationleft,hlinerotx,hlineroty,’Color’,’k’,’visible’,’off’);

112 layervline(frame) = plot(data.animationleft,vlinerotx,vlineroty,’Color’,’k’,’visible’,’off’);

113 layerCenterofMass(frame) = plot(data.animationleft,xDisplacement,yDisplacement,’Color’,’b’,’Marker’,’*’,’

visible’,’off’);

114 layerShearCenter(frame) = plot(data.animationleft,data.c,data.w(xGyrIndex,frame),’Color’,’red’,’Marker’,’*’,’

visible’,’off’);

115

116 %% The axes have to be scaled carefully to ensure that the frame captures

117 %% the whole animation. The following keeps track of the most outlying

118 %% points during the animation:

119 tempxmin = min([hlinerotx vlinerotx data.c]);

120 tempxmax = max([hlinerotx vlinerotx data.c]);

121 tempymin = min([hlineroty vlineroty data.w(xGyrIndex,frame)]);

122 tempymax = max([hlineroty vlineroty data.w(xGyrIndex,frame)]);

123 if xmin > tempxmin

124 xmin = tempxmin;

125 end

126 if xmax < tempxmax

127 xmax = tempxmax;

128 end

129 if ymin > tempymin

code 87

130 ymin = tempymin;

131 end

132 if ymax < tempymax

133 ymax = tempymax;

134 end

135 end

136 % Add a little padding to the plotrange:

137 xpadding = 0.03*(xmax-xmin);

138 ypadding = 0.03*(ymax-ymin);

139 % Create two invisible points which are nonetheless included in the plot at all times.

140 % They are created at the outmost lower left corner and upper right corner of the

141 % animation, which keeps MATLAB from scaling the plotrange dynamically as the animation

142 % is played back:

143 plot(data.animationleft,xmin-xpadding,-max([abs(ymin) ymax])-ypadding,’Color’,’white’);

144 plot(data.animationleft,xmax+xpadding,max([abs(ymin) ymax])+ypadding,’Color’,’white’);

145

146

147 %% The Right Plot (Twist and Bending Curves):

148

149 % The largest y-coordinate of any point in the right animation:

150 ymaxright = max([absmaxB absmaxT 0.001]);

151 % Set the limits to the right animation:

152 axis(data.animationright,[0,data.L,-ymaxright,ymaxright]);

153 % line on the right plot that shows which x coordinate the left plot is focused on

154 x = [data.xpoints(xGyrIndex) data.xpoints(xGyrIndex)];

155 y = [-ymaxright -0.6*ymaxright];

156 plot(data.animationright,x,y,’b’,’visible’,’on’);

157

158 % Render the frames of the right animations:

159 for frame=1:data.nframes

160 %bending curve

161 y = data.w(:,frame);

162 layerBendingCurve(frame) = plot(data.animationright,data.xpoints,y,’k’,’visible’,’off’);

163

164 %twist curve

165 y = data.phi(:,frame);

166 layerTorsionCurve(frame) = plot(data.animationright,data.xpoints,y,’r’,’visible’,’off’);

167 end

168

169 % Decorate the animations with labels and legend

170 legend(data.animationright,’Left plot x-position’,’Deflection due to bending, w(x,t)’,’Angle of twist, phi(x,t)’);

171 xlabel(data.animationright,’x [m]’)

172 ylabel(data.animationright,’z [m] / Rotation [rad]’)

173 xlabel(data.animationleft,’y [m]’)

174 ylabel(data.animationleft,’z [m]’)

175

176 % Show the first frame after pre-rendering:

177 set(layerhline(1),’visible’,’on’);

178 set(layervline(1),’visible’,’on’);

179 set(layerBendingCurve(1),’visible’,’on’);

180 set(layerTorsionCurve(1),’visible’,’on’);

181 set(layerCenterofMass(1),’visible’,’on’);

182 set(layerShearCenter(1),’visible’,’on’);

183

184 % save the layers that make up the plots, so they can be turned off and on

185 % by playback.m:

186 data.layerhline = layerhline;

187 data.layervline = layervline;

188 data.layerBendingCurve = layerBendingCurve;

189 data.layerTorsionCurve = layerTorsionCurve;

190 data.layerShearCenter = layerShearCenter;

191 data.layerCenterofMass = layerCenterofMass;

192

193 data.inputchanged = 0; % reset the flag because the animation is now up to date (this flag is used when showing

messages to the user)

194

195 notify(hObject,sprintf(’\nReady for playback!’),’temporary’);

196

88 visualization of beam with coupled bending and torsion vibrations

197 guidata(hObject, data); % Update guidata

198 end

code 89

B.7 playback.m

1 function playback (hObject)

2 % This is a function that animates the plot by turning

3 % layers on the plot on and off, which admittedly is an odd way of doing it.

4 % I found it necessary to write this function, because out of the box,

5 % MATLAB with its build in functions like movie(), cannot animate two plots

6 % at the same time. This looping over frames allows the animations to be

7 % rendered ’in parallel’.

8

9 handles = guihandles(hObject);

10 data = guidata(hObject);

11

12 for frame=1:data.nframes

13 % Turn off previous frame:

14 if frame>1 % dont do this on first iteration - will cause index out of bounds

15 set(data.layerhline(frame-1),’visible’,’off’);

16 set(data.layervline(frame-1),’visible’,’off’);

17 set(data.layerBendingCurve(frame-1),’visible’,’off’);

18 set(data.layerTorsionCurve(frame-1),’visible’,’off’);

19 set(data.layerShearCenter(frame-1),’visible’,’off’);

20 set(data.layerCenterofMass(frame-1),’visible’,’off’);

21 end

22 % Turn on current frame:

23 set(data.layerhline(frame),’visible’,’on’);

24 set(data.layervline(frame),’visible’,’on’);

25 set(data.layerBendingCurve(frame),’visible’,’on’);

26 set(data.layerTorsionCurve(frame),’visible’,’on’);

27 set(data.layerShearCenter(frame),’visible’,’on’);

28 set(data.layerCenterofMass(frame),’visible’,’on’);

29

30 message = sprintf(’t = %.3f seconds’,data.tpoints(frame));

31 set(handles.animationtime,’String’,message);

32

33 pause(1/data.fps)

34

35 % if this is the last frame, remove it and show the first frame again.

36 % This makes it a little nicer because when the playback is not

37 % running, the figures will show the initial conditions.

38 if frame == data.nframes(end)

39 set(data.layerhline(frame),’visible’,’off’);

40 set(data.layervline(frame),’visible’,’off’);

41 set(data.layerBendingCurve(frame),’visible’,’off’);

42 set(data.layerTorsionCurve(frame),’visible’,’off’);

43 set(data.layerShearCenter(frame),’visible’,’off’);

44 set(data.layerCenterofMass(frame),’visible’,’off’);

45 set(data.layerhline(1),’visible’,’on’);

46 set(data.layervline(1),’visible’,’on’);

47 set(data.layerBendingCurve(1),’visible’,’on’);

48 set(data.layerTorsionCurve(1),’visible’,’on’);

49 set(data.layerShearCenter(1),’visible’,’on’);

50 set(data.layerCenterofMass(1),’visible’,’on’);

51 end

52 end

53 set(handles.animationtime,’String’,’’);

54

55 end

90 visualization of beam with coupled bending and torsion vibrations

B.8 notify.m

1 function notify(hObject,message,option)

2 % This function is used to update text based information in the left side of the GUI

3 % It has three modes:

4 % ’reset’ Removes all previous text

5 % ’append’ Appends the message to the previous message.

6 % ’temporary’ Appends to the previous text, but does not save the appended message,

7 % so it will disappear the next time this function is called, no matter

8 % the option.

9

10 handles = guihandles(hObject);

11

12 if strcmp(option,’reset’) % Previous message is cleared first.

13 set(handles.console, ’String’, message);

14 set(handles.console, ’UserData’, {message});

15 elseif strcmp(option,’append’) % Message is appended to previous message.

16 newmessage = get(handles.console, ’UserData’);

17 newmessage{end+1} = message;

18 set(handles.console, ’String’, newmessage);

19 set(handles.console, ’UserData’, newmessage);

20 elseif strcmp(option,’temporary’) % Message is appended, but only temporarily. It is not saved into data.

currentmessage, and therefore disappears the next time notify is called.

21 newmessage = get(handles.console, ’UserData’);

22 newmessage{end+1} = message;

23 set(handles.console, ’String’, newmessage);

24 end

25

26 pause(0.0001); % for some reason, the GUI does not update if MATLAB is about to do something else, like when

notify is called from within solver.m. This forces MATLAB to stop for a moment and gives it time to update

the GUI. It seems to work.

27

28 end

Bibliography

The program code. URL https://dl.dropboxusercontent.com/u/

7180193/BA/BAprogram.zip.

Ole Christensen. Differentialligninger og uendelige rækker. 2005. ISBN
87-88-76473-7.

Jan Becker Høgsberg and Steen Krenk. Analysis of moderately
thin-walled beam cross-sections by cubic isoparametric elements.
Computers and Structures, 134:88–101, 2014. ISSN 0045-7949. doi:
10.1016/j.compstruc.2014.01.002.

Daniel. Inman. Engineering Vibration. Pearson Prentice Hall, 2008.
ISBN 0132281732, 9780132281737.

Steen Krenk and Jan Becker Høgsberg. Statics and Mechanics of
Structures. 2013. ISBN 978-94-007-6112-4.

Jon Juel Thomsen. Vibrations and Stability. 2003. ISBN 978-3-642-
07272-7.

https://dl.dropboxusercontent.com/u/7180193/BA/BAprogram.zip
https://dl.dropboxusercontent.com/u/7180193/BA/BAprogram.zip

	Abstract
	Table of contents
	Notation
	Introduction
	Deriving the Coupled Equations of Motion
	Equilibrium of moments
	Force equilibrium
	Equilibrium of torques

	Solving the Coupled Equations of Motion
	Deriving basis functions from the uncoupled equations
	Basis functions for deflections due to bending of a hinged-hinged beam
	Basis functions for a fixed-fixed beam with regards to torsion
	Other boundary conditions

	Manipulating the coupled equations of motion from PDEs to ODEs
	Harmonic oscillations
	Mode shapes
	Natural response

	Forced response

	Implementation in MATLAB
	Computing the vibration
	Computing a single mode shape
	Natural response
	Forced response

	The layout of the gui
	Specifying input
	The default input

	Overview of code files
	The MATLAB Layout Toolbox by The MathWorks Ltd
	Passing data and handles between functions
	Rendering and playing back the animations
	Notes on the development process
	Modification to the Layout Toolbox
	Known bugs
	Further development

	Appendix
	Relation between moment of inertia and polar moment of area
	Orthogonality conditions

	Code
	launcher.m
	opengui.m
	defaults.m
	collectinput.m
	solver.m
	plotting.m
	playback.m
	notify.m

	Bibliography

